1. [1] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, "Capacitor-current-feedback active damping with reduced computation delay for improving robustness of lcl-type grid-connected inverter," IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3414-3427, 2013. [
DOI:10.1109/TPEL.2013.2279206]
2. [2] J. He and Y. W. Li, "Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with lc or lcl filters," IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1850-1861, 2011. [
DOI:10.1109/TPEL.2011.2168427]
3. [3] C. Bao, X. Ruan, X. Wang, W. Li, D. Pan, and K. Weng, "Step-by-step controller design for LCL-type grid-connected inverter with capacitor-current feedback active-damping," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1239-1253, 2013. [
DOI:10.1109/TPEL.2013.2262378]
4. [4] V. Miskovic, V. Blasko, T. M. Jahns, A. H. Smith, and C. Romenesko, "Observer-based active damping of LCL resonance in grid-connected voltage source converters," IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3977-3985, 2014. [
DOI:10.1109/TIA.2014.2317849]
5. [5] X. Wang, F. Blaabjerg, and P. C. Loh, "Design-oriented analysis of resonance damping and harmonic compensation for LCL-filtered voltage source converters," in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), pp. 216-223. IEEE, 2014. [
DOI:10.1109/IPEC.2014.6869583]
6. [6] X. Wang, F. Blaabjerg, and P. C. Loh, "Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters," IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 213-223, 2015. [
DOI:10.1109/TPEL.2015.2411851]
7. [7] A. J. Xu, B. S. Xie, C. J. Kan, and D. L. Ji, "An improved inverter-side current feedback control for grid-connected inverters with LCL filters," in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPEECCE Asia), pp. 984-989. IEEE, 2015.
8. [8] L. Zhou, X. Zhou, Y. Chen, Z. Lv, Z. He, W. Wu, L. Yang, K. Yan, A. Luo, and J. M. Guerrero, "Inverter-current-feedback resonance-suppression method for LCL-type dg system to reduce resonance-frequency offset and grid-inductance effect," IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7036-7048, 2018. [
DOI:10.1109/TIE.2018.2795556]
9. [9] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, "Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter," IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3414-3427, 2013. [
DOI:10.1109/TPEL.2013.2279206]
10. [10] X. Li, X. Wu, Y. Geng, X. Yuan, C. Xia, and X. Zhang, "Wide damping region for LCL-type grid-connected inverter with an improved capacitor current-feedback method," IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 5247-5259, 2014. [
DOI:10.1109/TPEL.2014.2364897]
11. [11] Malinowski, Mariusz, and Steffen Bernet. "A simple voltage sensorless active damping scheme for three-phase PWM converters with an $ LCL $ filter." IEEE Transactions on Industrial Electronics 55.4 (2008): 1876-1880. [
DOI:10.1109/TIE.2008.917066]
12. [12] R. Pe˜na-Alzola, M. Liserre, F. Blaabjerg, R. Sebasti'an, J. Dannehl, and F. W. Fuchs, "Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters," IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 43-52, 2013. [
DOI:10.1109/TII.2013.2263506]
13. [13] V. Blasko and V. Kaura, "A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter," IEEE Transactions on Industry Applications, vol. 33, no. 2, pp. 542-550, 1997. [
DOI:10.1109/28.568021]
14. [14] V. Blasko and V. Kaura, "A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter," IEEE Transactions on Industry Applications, vol. 33, no. 2, pp. 542-550, 1997. [
DOI:10.1109/28.568021]
15. [15] J. Xu, S. Xie, and T. Tang, "Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only," IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4746-4758, 2013. [
DOI:10.1109/TIE.2013.2290771]
16. [16] R. Guzman, L. G. de Vicu˜na, M. Castilla, J. Miret, and H. Martin, "Variable structure control in natural frame for three-phase grid-connected inverters with LCL filter," IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4512-4522, 2017. [
DOI:10.1109/TPEL.2017.2723638]
17. [17] W. Jiang, W. Ma, J. Wang, L. Wang, and Y. Gao, "Deadbeat control based on current predictive calibration for grid-connected converter under unbalanced grid voltage," IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5479-5491, 2017. [
DOI:10.1109/TIE.2017.2674620]
18. [18] C. A. Busada, S. G. Jorge, and J. A. Solsona, "Full-state feedback equivalent controller for active damping in LCL-filtered grid-connected inverters using a reduced number of sensors," IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 5993-6002, 2015. [
DOI:10.1109/TIE.2015.2424391]
19. [19] P. Karamanakos, R. Mattila, and T. Geyer, "Fixed switching frequency direct model predictive control based on output current gradients," in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, DOI 10.1109/IECON.2018.8592733, pp. 2329-2334, 2018. [
DOI:10.1109/IECON.2018.8592733]
20. [20] F. Piotr, "Finite control set model predictive control for grid-connected NPC converter with LCL filter and novel resonance damping method," in 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), pp. P-1. IEEE, 2017. [
DOI:10.23919/EPE17ECCEEurope.2017.8099023]
21. [21] G. V. Hollweg, P. J. D. de Oliveira Evald, E. Mattos, R. V. Tambara, and H. A. Gr¨undling, "Feasibility assessment of adaptive sliding mode controllers for grid-tied inverters with LCL filter," Journal of Control, Automation and Electrical Systems, vol. 33, no. 2, pp. 434-447, 2022. [
DOI:10.1007/s40313-021-00835-5]
22. [22] S. G. Parker, B. P. McGrath, and D. G. Holmes, "Regions of active damping control for LCL filters," IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 424-432, 2013. [
DOI:10.1109/TIA.2013.2266892]
23. [23] T. Liu, J. Liu, Z. Liu, and Z. Liu, "A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters," IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 247-262, 2019. [
DOI:10.1109/TPEL.2019.2911163]
24. [24] R. Guzman, L. G. de Vicu˜na, M. Castilla, J. Miret, and J. de la Hoz, "Variable structure control for three-phase LCL-filtered inverters using a reduced converter model," IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 5-15, 2017. [
DOI:10.1109/TIE.2017.2716881]
25. [25] K. Kumari and A. K. Jain, "Cascaded control for lcl filter based grid-tied system with reduced sensors," IET Power Electronics, 2022. [
DOI:10.1049/pel2.12323]
26. [26] J. Dannehl, F. W. Fuchs, and P. B. Thogersen, "PI state space current control of grid-connected PWM converters with LCL filters," IEEE transactions on power electronics, vol. 25, no. 9, pp. 2320-2330, 2010. [
DOI:10.1109/TPEL.2010.2047408]
27. [27] X. Bao, F. Zhuo, Y. Tian, and P. Tan, "Simplified feedback linearization control of three-phase photovoltaic inverter with an lcl filter," IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2739-2752, 2012. [
DOI:10.1109/TPEL.2012.2225076]
28. [28] J. Kukkola and M. Hinkkanen, "Observer-based state-space current control for a three-phase grid-connected converter equipped with an lcl filter," IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2700-2709, 2013. [
DOI:10.1109/TIA.2013.2295461]
29. [29] K. Hatua, A. K. Jain, D. Banerjee, and V. T. Ranganathan, "Active damping of output LC filter resonance for vector-controlled VSI-fed ac motor drives," IEEE Transactions on Industrial Electronics, vol. 59, DOI 10.1109/TIE.2011.2141093, no. 1, pp. 334-342, 2012. [
DOI:10.1109/TIE.2011.2141093]
30. [30] J. Dannehl, M. Liserre, F. W. Fuchs, "Filter-based active damping of voltage source converters with lcl filter", IEEE Transactions on Industrial Electronics 58 (8) (2010) 3623-3633. [
DOI:10.1109/TIE.2010.2081952]
31. [31] O. Nelles, "Nonlinear system identification: from classical approaches to neural networks, fuzzy models, and gaussian processes", Springer Nature, 2020. [
DOI:10.1007/978-3-030-47439-3]
32. [32] J. Dannehl, C. Wessels, F. W. Fuchs, "Limitations of voltage-oriented pi current control of grid-connected pwm rectifiers with lcl filters", IEEE transactions on industrial electronics 56 (2) (2008) 380-388. [
DOI:10.1109/TIE.2008.2008774]
33. [33] Guan, Yuanpeng, et al. "The dual-current control strategy of grid-connected inverter with LCL filter." IEEE Transactions on Power Electronics 34.6 (2018): 5940-5952. [
DOI:10.1109/TPEL.2018.2869625]
34. [34] Dannehl, Jörg, et al. "Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters." IEEE Transactions on Industry Applications 46.4 (2010): 1509-1517. [
DOI:10.1109/TIA.2010.2049974]