Volume 1, Issue 2 (Journal of Control (English Edition), VOL. 01, NO. 02, 2022)                   jocee 2022, 1(2): 27-36 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yarmohammadi L, Hosseini S M H, Olamaei J, Mozafari B. Maximizing the efficiency of LCLCL-T Compensated Wireless Power Transfer Systems with independent-load Characteristics for charging applications in Smart Home. jocee 2022; 1 (2) :27-36
URL: http://jocee.kntu.ac.ir/article-1-59-en.html
1- Department of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2- Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (572 Views)
current study focuses on optimizing the efficiency of an LCLCL-T compensated topology in wireless power transfer systems with load-independent output current capability for battery charging. Wireless battery chargers play key devices in smart homes. To improve efficiency in these chargers, various compensated topologies are employed. In particular, the symmetric compensated LCLCL-T topology has been extensively used due to its inherent features, such as constant current output (CC), and high ability to absorb parasitic elements. However, one of the main deficits of this resonant compensation is decreased load regulation despite controlling the frequency, and on the other hand, its efficiency decreases owing to an increase in the circulating current. Therefore, in this study, the parameters of the proposed topology are reconfigured by adjusting the KW/KVA as an index to a reduction of voltage/current stresses on their elements without changing the specified system-level parameters, such as the system operating frequency, and specified CC output. Moreover, the circuit performance in the high-frequency response under different conditions is analyzed in detail, to optimize the system efficiency. Finally, the proposed system is simulated in PSIM to design the specific parameter values, the sample topology is also carried out. Analytical results show that the proposed compensation has the minimum output current fluctuation versus variations of the coupling coefficient and other parameters. Moreover, the analysis proves that, compared with the conventional design method, the proposed method improves the topology efficiency under various loads, especially under light loads.
Full-Text [PDF 903 kb]   (154 Downloads)    
Type of Article: Research paper | Subject: Special Issue
Received: 2022/08/9 | Accepted: 2022/11/15 | ePublished ahead of print: 2022/12/1 | Published: 2022/12/5

References
1. [1] Liu, H.; Huang, X.; Tan, L.; Guo, J.; Wang, W.; Yan, C.; Xu, C." Dynamic Wireless Charging for Inspection Robots Based on Decentralized Energy Pickup Structure". IEEE Trans. Ind. Inform. 2018, 14, 1786-1797. [DOI:10.1109/TII.2017.2781370]
2. [2] Zhang, Y.; Tian, G.; Lu, J.; Zhang, M.; Zhang, S."Efficient Dynamic Object Search in Home Environment by Mobile Robot: A Priori Knowledge-Based Approach". IEEE Trans. Veh. Technol. 2019, 68, 9466-9477. [DOI:10.1109/TVT.2019.2934509]
3. [3] Huang, S.; Lee, T.; Li, W.; Chen, R."Modular On-Road AGV Wireless Charging Systems Via Interoperable Power Adjustment". IEEE Trans. Ind. Electron. 2019, 66, 5918-5928. [DOI:10.1109/TIE.2018.2873165]
4. [4] Siroos, A.; Sedighizadeh, M.; Afjei, E.; Fini, A.S." Comparison of different controllers for wireless charging system in AUVs". In Proceedings of the 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC Tehran, Iran, 1-3 February 2022; pp. 155-160. [DOI:10.1109/PEDSTC53976.2022.9767377]
5. [5] Tang, Y.; Chen, Y.; Madawala, U.K.; Thrimawithana, D.J.; Ma, H. "A New Controller for Bidirectional Wireless Power Transfer Systems". IEEE Trans. Power Electron. 2018, 33, 9076-9087. [DOI:10.1109/TPEL.2017.2785365]
6. [6] Esmaeil, J.; Salehizadeh, M.R.; Rahimikian, A."Optimal control of the power ramp rate with flicker mitigation for directly grid connected W.
7. [7] Zhang, S. C. Wong, C. K. Tse, and Q. Chen, "Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems," IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191-200, Jan. 2014. wind turbines". [DOI:10.1109/TPEL.2013.2249112]
8. [8] S. Samanta and A. K. Rathore, "Analysis and design of load independent ZPA operation for P/S, PS/S, P/SP, and PS/SP tank networks in IPT applications," IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6476-6482, Aug. 2018. [DOI:10.1109/TPEL.2018.2794623]
9. [9] W. Zhang, J. C. White, R. K. Malhan, and C. C. Mi, "Loosely coupled transformer coil design to minimize EMF radiation in concerned areas," IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4779-4789, Jun. 2016. [DOI:10.1109/TVT.2016.2535272]
10. [10] Barman, S. D., Reza, A. W., Kumar, N., Karim, M. E., & Munir, A. B. (2015). "Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications," Renewable and Sustainable energy reviews, 51, 1525-1552. [DOI:10.1016/j.rser.2015.07.031]
11. [11] Hou, J.; Chen, Q.; Zhang, Z.; Wong, S.; Tse, C.K." Analysis of Output Current Characteristics for Higher-Order Primary Compensation in Inductive Power Transfer Systems". IEEE Trans. Power Electron. 2018, 33, 6807-6821. [DOI:10.1109/TPEL.2017.2755862]
12. [12] Li, Y., Sun, W., Zhu, X., & Hu, J. (2021). A hybrid modulation control for wireless power transfer systems to improve efficiency under light-load conditions. IEEE Transactions on Industrial Electronics, 69(7), 6870-6880. [DOI:10.1109/TIE.2021.3102411]
13. [13] Huang, Z.; Lam, C.; Mak, P.; Martins, R.P.d.S.; Wong, S.; Tse, C.K. " A Single-Stage Inductive-Power-Transfer Converter for Constant-Power and Maximum-Efficiency Battery Charging". IEEE Trans. Power Electron. 2020, 35, 8973-8984. [DOI:10.1109/TPEL.2020.2969685]
14. [14] S. S. Lourdusami and R. Viaramani, "Analysis, design and experimentation of series-parallel LCC resonant converter for constant current source," IEICE Electron. Exp., vol. 11, no. 17, pp. 1-12, Aug. 2014. [DOI:10.1587/elex.11.20140711]
15. [15] F. Duan, M. Xu, X. Yang, and Y. Yao, "Canonical model and design methodology for LLC DC/DC converter with constant current operation capability under shorted load," IEEE Trans. Power Electron., vol. 31, no. 10, pp. 6870-6883, Oct. 2016. [DOI:10.1109/TPEL.2015.2508671]
16. [16] Y. Li, Q. Xu, T. Lin, J. Hu, Z. He, and R. Mai, "Analysis and Design of Load-Independent Output Current or Output Voltage of a Three-Coil Wireless Power Transfer System," in IEEE Transactions on Transportation Electrification, vol. 4, no. 2, pp. 364-375, June 2018. [DOI:10.1109/TTE.2018.2808698]
17. [17] Salehizadeh, M. R., Koohbijari, M. A., Nouri, H., Taşcıkaraoğlu, A., Erdinç, O., & Catalao, J. P. (2019). Bi-objective optimization model for optimal placement of thyristor-controlled series compensator devices. Energies, 12(13), 2601. [DOI:10.3390/en12132601]
18. [18] R. Naghash, S. M. M. Alavi and S. E. Afjei, "Robust Control of Wireless Power Transfer Despite Load and Data Communications Uncertainties," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4897-4905, Aug. 2021. [DOI:10.1109/JESTPE.2020.3033001]
19. [19] B. E. Jamakani, E. Afjei, and A. Mosallanejad, "A Novel Triple Quadrature Pad for Inductive Power Transfer Systems for Electric Vehicle Charging," 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2019, pp. 618-623. [DOI:10.1109/PEDSTC.2019.8697654]
20. [20] Zhang and C. C. Mi, "Compensation topologies of high-power wireless power transfer systems," IEEE Trans. Vehicular Tech., vol. 65, no. 6, pp. 4768-4778, July. 2016. [DOI:10.1109/TVT.2015.2454292]
21. [21] A. Ramezani, S. Farhangi, H. Iman-Eini, B. Farhangi, R. Rahimi, G. R. Moradi, "Optimized LCC-Series Compensated Resonant Network for Stationary Wireless EV Chargers," IEEE Trans. on Industrial Electronics, vol. 66, no. 4, pp. 2756-2765, April 2019. [DOI:10.1109/TIE.2018.2840502]
22. [22] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, "Load-independent duality of current and voltage outputs of a series- orparallel-compensated inductive power transfer converter withoptimized efficiency," IEEE J. Emerg. Sel. Topics in Power Electron.,vol. 3, no. 1, pp. 137-146, Mar. 2015. [DOI:10.1109/JESTPE.2014.2348558]
23. [23] X. Qu, W. Zhang, S. C. Wong, and C. K. Tse, "Design of a current-source-output inductive power transfer LED lighting system,"IEEE J. Emerg. Sel. Topics in Power Electron., vol. 3, no. 1, pp.306-314, Mar. 2015. [DOI:10.1109/JESTPE.2014.2318045]
24. [24] V. J. Brusamarello, Y. B. Blauth, R. de Azambuja, I. Muller and F. R. de Sousa, "Power Transfer With an Inductive Link and Wireless Tuning," in IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 5, pp. 924-931, May 2013. [DOI:10.1109/TIM.2013.2245041]
25. [25] Y. Yao, Y. Wang, X. Liu, F. Lin, and D. Xu, "A novel parameter tuning method for a double-sided LCL compensated WPT system with better comprehensive performance," IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8525-8536, Oct. 2018. [DOI:10.1109/TPEL.2017.2778255]
26. [26] Daniel Thenathyalan and Joung-HU park, "High-order resonant converter topology with extremely low-coupling contactless," IEEE Trans. on Power Electronics., vol. 31, no. 3, pp. 2347-2361, march. 2016. [DOI:10.1109/TPEL.2015.2435254]
27. [27] Seyit Ahmet Sis, Hakan Akca, "Maximizing the efficiency of wireless power transfer systems with an optimal duty cycle operation," AEU-International Journal of Electronics and Communications. vol. 116, pp. 153081, March. 2020. [DOI:10.1016/j.aeue.2020.153081]
28. [28] H. Zeng, S. Yang, and F. Z. Peng, "Design consideration and comparison of wireless power transfer via harmonic current," IEEE Trans. Power Electron., vol. 32, no. 8, pp. 5943-5952, Aug. 2017. [DOI:10.1109/TPEL.2016.2616111]
29. [29] Xia C, Chen R, Liu Y, Liu L, Chen G., " Inhibition of current harmonics in LCL/LCC wireless power transfer system," In: 2017 IEEE PELS workshop on emerging technologies: wireless power transfer, WoW 2017. Institute of Electrical and Electronics Engineers Inc.; 2017. [DOI:10.1109/WoW.2017.7959390]
30. [30] Liu M, Fu M, Ma C., "Low-harmonic-contents and high-efficiency class e fullwave current-driven rectifier for megahertz wireless power transfer systems," IEEE Trans Power Electron 2017; 32(2):1198-209. [DOI:10.1109/TPEL.2016.2551288]
31. [31] Luo S, Li S, Zhao H., "Reactive power comparison of four-coil, LCC and CLC compensation network for wireless power transfer," In: 2017 IEEE PELS workshop on emerging technologies: wireless power transfer, WoW 2017. Institute of Electrical and Electronics Engineers Inc.; 2017. p. 268-71. [DOI:10.1109/WoW.2017.7959407]
32. [32] Li Y, Mai R, Yang M, He Z., "Cascaded multi-level inverter based IPT systems for high power applications," J Power Electron 2015; 15(6):1508-16. [DOI:10.6113/JPE.2015.15.6.1508]
33. [33] Li Y, Mai R, Lu L, He Z, Liu S., "Harmonic elimination and power regulation based five-level inverter for supplying IPT systems," In: IEEE WoW 2015 - IEEE PELS workshop on emerging technologies: wireless power, proceedings. Institute of Electrical and Electronics Engineers Inc.; 2015 [DOI:10.1109/WoW.2015.7132843]
34. [34] L. Yarmohammadi, S. M. H. Hosseini, J. Olamaei, and B. Mozafari, "A Load-Independent Output Current Method for Wireless Power Transfer Systems with Optimal Parameter Tuning," Sustainability, vol. 14, no. 15, p. 9391, Jul. 2022. [DOI:10.3390/su14159391]
35. [35] Y. Chen, H. Zhang, S. Park, and D. Kim, "A switching hybrid LCC-S compensation topology for constant current/voltage EV wireless charging," IEEE Access., vol.7, pp.133924-133935, Sept. 2019. [DOI:10.1109/ACCESS.2019.2941652]
36. [36] R. L. Steigerwald, "A comparison of half-bridge resonant converter topologies," IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, Apr. 1988. [DOI:10.1109/63.4347]
37. [37] M. Borage, K. V. Nagesh, M. S. Bhatia, and S. Tiwari, "Resonant immittance converter topologies," IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 971-978, Mar. 2011. [DOI:10.1109/TIE.2010.2047835]
38. [38] J.T. Boys, G.A. Covic, "The Inductive Power Transfer Story at the University of Auckland," IEEE Circuit Syst. Mag., vol. 15, pp. 6 - 27, 2015. [DOI:10.1109/MCAS.2015.2418972]
39. [39] Kim, M.; Kim, J.; Lee, B. Adjustable frequency-duty-cycle hybrid control strategy for full-bridge series resonant converters in electric vehicle chargers. IEEE Trans. Ind. Electron. 2014, 61, [DOI:10.1109/TIE.2014.2300036]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control (English Edition)

Designed & Developed by : Yektaweb