Volume 1, Issue 2 (Journal of Control (English Edition), VOL. 01, NO. 02, 2022)                   jocee 2022, 1(2): 37-53 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barazesh M, Javidi Dasht Bayaz M H. Investigating the Effect of Tariff Revision Process on Electricity Retail Tariff and Utilities Death Spiral. jocee 2022; 1 (2) :37-53
URL: http://jocee.kntu.ac.ir/article-1-56-en.html
1- Power System Studies & Restructuring Research Lab (PSRES), Ferdowsi University of Mashhad
Abstract:   (686 Views)
The accelerating deployment of Distributed Energy Resources (DERs) is eating away at electric utilities sales and revenues. It is feared that attempting to recover their lost revenue through raising tariffs may trap utilities in a "Death Spiral". In this paper, the interaction between utilities, consumers, and DERs is modeled using System Dynamics (SD) to investigate the impact of distributed renewable resources on utilities. Furthermore, a new model for electricity tariff revision has been developed that captures regulatory and organizational delays. The model has been simulated with the latest available data and sensitivity analysis has been carried out for important parameters. Results suggest that while the death spiral is not an immediate threat under normal conditions, the delay in price revision can introduce considerable fluctuation in electricity tariff, which worsens when the delay increases. Another outcome of this study is that population growth has the potential to mitigate the effects of death spiral. On the flip side, utilities serving areas with a low rate of population growth, such as Europe, face a more significant threat from distributed resources.
Full-Text [PDF 1433 kb]   (187 Downloads)    
Type of Article: Research paper | Subject: Special Issue
Received: 2022/08/1 | Accepted: 2022/11/20 | ePublished ahead of print: 2022/12/1 | Published: 2022/12/5

1. [1] A. Ford, "System dynamics and the electric power industry," Syst Dyn Rev, vol. 13, no. 1, pp. 57-85, 1997, doi: 10.1002/(sici)1099-1727(199721)13:1<57::aid-sdr117>3.3.co;2-2. https://doi.org/10.1002/(SICI)1099-1727(199721)13:1<57::AID-SDR117>3.3.CO;2-2 [DOI:10.1002/(SICI)1099-1727(199721)13:13.3.CO;2-2]
2. [2] E. Graffy, Does Disruptive Competition Mean a Death, vol. 35, no. 1. 2014.
3. [3] J. A. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins, "Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities," Electric Power Systems Research, vol. 77, no. 9, pp. 1189-1203, Jul. 2007, doi: 10.1016/J.EPSR.2006.08.016. [DOI:10.1016/j.epsr.2006.08.016]
4. [4] S. E. Razavi et al., "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, vol. 105, pp. 157-167, May 2019, doi: 10.1016/J.RSER.2019.01.050. [DOI:10.1016/j.rser.2019.01.050]
5. [5] M. S. Kim, R. Haider, G. J. Cho, C. H. Kim, C. Y. Won, and J. S. Chai, "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems," Energies 2019, Vol. 12, Page 837, vol. 12, no. 5, p. 837, Mar. 2019, doi: 10.3390/EN12050837. [DOI:10.3390/en12050837]
6. [6] S. Kakran and S. Chanana, "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, vol. 81, pp. 524-535, Jan. 2018, doi: 10.1016/J.RSER.2017.07.045. [DOI:10.1016/j.rser.2017.07.045]
7. [7] Z. A. Arfeen, A. B. Khairuddin, R. M. Larik, and M. S. Saeed, "Control of distributed generation systems for microgrid applications: A technological review," International Transactions on Electrical Energy Systems, vol. 29, no. 9, p. e12072, Sep. 2019, doi: 10.1002/2050-7038.12072. [DOI:10.1002/2050-7038.12072]
8. [8] B. Singh and J. Sharma, "A review on distributed generation planning," Renewable and Sustainable Energy Reviews, vol. 76, pp. 529-544, Sep. 2017, doi: 10.1016/J.RSER.2017.03.034. [DOI:10.1016/j.rser.2017.03.034]
9. [9] F. P. Sioshansi, Distributed Generation and its Implications for the Utility Industry. 2014.
10. [10] F. P. Sioshansi, Innovation and Disruption at the Grid's Edge, 1st ed. Academic Press, 2017. doi: 10.1016/B978-0-12-811758-3.00001-2. [DOI:10.1016/B978-0-12-811758-3.00001-2]
11. [11] F. P. Sioshansi, Future of Utilities Utilities of the Future, 1st ed. Academic Press, 2016. [DOI:10.1016/B978-0-12-804249-6.00001-4]
12. [12] M. Chesser, J. Hanly, D. Cassells, and N. Apergis, "The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices," Energy Policy, vol. 122, no. July, pp. 36-44, 2018, doi: 10.1016/j.enpol.2018.07.032. [DOI:10.1016/j.enpol.2018.07.032]
13. [13] John. D. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World, 1st ed. McGraw-Hill Education, 2000.
14. [14] M. Barazesh, F. F. Nia, and M. H. J. D. Bayaz, "Investigating the Effect of Renewable Distributed Generation and Price Elasticity of Demand on Electric Utilities' Death Spiral," in 2019 International Power System Conference (PSC), Dec. 2019, pp. 216-221. doi: 10.1109/PSC49016.2019.9081453. [DOI:10.1109/PSC49016.2019.9081453]
15. [15] N. D. Laws, B. P. Epps, S. O. Peterson, M. S. Laser, and G. K. Wanjiru, "On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage," Appl Energy, vol. 185, pp. 627-641, 2017, doi: 10.1016/j.apenergy.2016.10.123. [DOI:10.1016/j.apenergy.2016.10.123]
16. [16] M. Castaneda, M. Jimenez, S. Zapata, C. J. Franco, and I. Dyner, "Myths and facts of the utility death spiral," Energy Policy, vol. 110, no. 65, pp. 105-116, 2017, doi: 10.1016/j.enpol.2017.07.063. [DOI:10.1016/j.enpol.2017.07.063]
17. [17] M. Castaneda, C. J. Franco, and I. Dyner, "Evaluating the effect of technology transformation on the electricity utility industry," Renewable and Sustainable Energy Reviews, vol. 80, no. 65, pp. 341-351, 2017, doi: 10.1016/j.rser.2017.05.179. [DOI:10.1016/j.rser.2017.05.179]
18. [18] S. Young, A. Bruce, and I. MacGill, "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, vol. 128, no. January, pp. 616-627, 2019, doi: 10.1016/j.enpol.2019.01.005. [DOI:10.1016/j.enpol.2019.01.005]
19. [19] M. Kubli and S. Ulli-Beer, "Decentralisation dynamics in energy systems: A generic simulation of network effects," Energy Res Soc Sci, vol. 13, pp. 71-83, 2016, doi: 10.1016/j.erss.2015.12.015. [DOI:10.1016/j.erss.2015.12.015]
20. [20] M. Kubli, "Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for solar prosumers," Energy Policy, vol. 114, no. June 2016, pp. 173-188, 2018, doi: 10.1016/j.enpol.2017.11.054. [DOI:10.1016/j.enpol.2017.11.054]
21. [21] D. W. H. Cai, S. Adlakha, S. H. Low, P. De Martini, and K. Mani Chandy, "Impact of residential PV adoption on Retail Electricity Rates," Energy Policy, vol. 62, pp. 830-843, 2013, doi: 10.1016/j.enpol.2013.07.009. [DOI:10.1016/j.enpol.2013.07.009]
22. [22] A. Satchwell, A. Mills, and G. Barbose, "Quantifying the financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, vol. 80, pp. 133-144, 2015, doi: 10.1016/j.enpol.2015.01.043. [DOI:10.1016/j.enpol.2015.01.043]
23. [23] K. W. Costello and R. C. Hemphill, "Electric utilities' 'death spiral': Hyperbole or reality?," Electricity Journal, vol. 27, no. 10, pp. 7-26, 2014, doi: 10.1016/j.tej.2014.09.011. [DOI:10.1016/j.tej.2014.09.011]
24. [24] N. R. Darghouth, G. Barbose, and R. Wiser, "The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California," Energy Policy, vol. 39, no. 9, pp. 5243-5253, 2011, doi: 10.1016/j.enpol.2011.05.040. [DOI:10.1016/j.enpol.2011.05.040]
25. [25] N. R. Darghouth, R. H. Wiser, G. Barbose, and A. D. Mills, "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Appl Energy, vol. 162, pp. 713-722, 2016, doi: 10.1016/j.apenergy.2015.10.120. [DOI:10.1016/j.apenergy.2015.10.120]
26. [26] Q. Hoarau and Y. Perez, "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Econ, vol. 83, pp. 26-39, 2019, doi: 10.1016/j.eneco.2019.05.009. [DOI:10.1016/j.eneco.2019.05.009]
27. [27] C. Eid, J. Reneses Guillén, P. Frías Marín, and R. Hakvoort, "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, vol. 75, pp. 244-254, 2014, doi: 10.1016/j.enpol.2014.09.011. [DOI:10.1016/j.enpol.2014.09.011]
28. [28] M. Castaneda, S. Zapata, J. Cherni, A. J. Aristizabal, and I. Dyner, "The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector," Renew Energy, vol. 155, pp. 1432-1443, 2020, doi: 10.1016/j.renene.2020.04.051. [DOI:10.1016/j.renene.2020.04.051]
29. [29] S. Candas, K. Siala, and T. Hamacher, "Sociodynamic modeling of small-scale PV adoption and insights on future expansion without feed-in tariffs," Energy Policy, vol. 125, no. October 2017, pp. 521-536, 2019, doi: 10.1016/j.enpol.2018.10.029. [DOI:10.1016/j.enpol.2018.10.029]
30. [30] F. A. Felder and R. Athawale, "The life and death of the utility death spiral," Electricity Journal, vol. 27, no. 6, pp. 9-16, 2014, doi: 10.1016/j.tej.2014.06.008. [DOI:10.1016/j.tej.2014.06.008]
31. [31] K. W. Costello, "Major challenges of distributed generation for state utility regulators," Electricity Journal, vol. 28, no. 3, pp. 8-25, 2015, doi: 10.1016/j.tej.2015.03.002. [DOI:10.1016/j.tej.2015.03.002]
32. [32] C. Rochlin, "Distributed renewable resources and the utility business model," El ectricity Journal, vol. 29, no. 1, pp. 7-12, 2016, doi: 10.1016/j.tej.2015.12.001. [DOI:10.1016/j.tej.2015.12.001]
33. [33] S. P. Burger and M. Luke, "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, vol. 109, no. June, pp. 230-248, 2017, doi: 10.1016/j.enpol.2017.07.007. [DOI:10.1016/j.enpol.2017.07.007]
34. [34] J. Zapata Riveros, M. Kubli, and S. Ulli-Beer, "Prosumer communities as strategic allies for electric utilities: Exploring future decentralization trends in Switzerland," Energy Res Soc Sci, vol. 57, no. September 2018, p. 101219, 2019, doi: 10.1016/j.erss.2019.101219. [DOI:10.1016/j.erss.2019.101219]
35. [35] M. Engelken, B. Römer, M. Drescher, I. M. Welpe, and A. Picot, "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, vol. 60, pp. 795-809, 2016, doi: 10.1016/j.rser.2015.12.163. [DOI:10.1016/j.rser.2015.12.163]
36. [36] A. Satchwell, A. Mills, and G. Barbose, "Regulatory and ratemaking approaches to mitigate financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, vol. 85, pp. 115-125, 2015, doi: 10.1016/j.enpol.2015.05.019. [DOI:10.1016/j.enpol.2015.05.019]
37. [37] J. Riesz and J. Gilmore, "Rethinking business models for network service providers - Shadow pricing against storage," in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nov. 2015, vol. 3, pp. 1-5. doi: 10.1109/APPEEC.2015.7381041. [DOI:10.1109/APPEEC.2015.7381041]
38. [38] A. S. Ibanez-Lopez, J. M. Martinez-Val, and B. Y. Moratilla-Soria, "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, vol. 102, no. March 2016, pp. 170-188, 2017, doi: 10.1016/j.enpol.2016.12.026. [DOI:10.1016/j.enpol.2016.12.026]
39. [39] A. Ford, "System Dynamics Models of Environment, Energy, and Climate Change," in System Dynamics, New York, NY: Springer US, 2020, pp. 375-399. doi: 10.1007/978-1-4939-8790-0_541. [DOI:10.1007/978-1-4939-8790-0_541]
40. [40] S. Ahmad, R. Mat Tahar, F. Muhammad-Sukki, A. B. Munir, and R. Abdul Rahim, "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, vol. 56, pp. 29-37, 2016, doi: 10.1016/j.rser.2015.11.034. [DOI:10.1016/j.rser.2015.11.034]
41. [41] A. Leopold, "Energy related system dynamic models: a literature review," Cent Eur J Oper Res, vol. 24, no. 1, pp. 231-261, 2016, doi: 10.1007/s10100-015-0417-4. [DOI:10.1007/s10100-015-0417-4]
42. [42] C. Pechman, "Regulation and the Monopoly Status of the Electric Distribution Utility," Washington DC, Jun. 2022. Accessed: Oct. 18, 2022. [Online]. Available: https://bit.ly/3nahkTZ
43. [43] "UTILITIES CODE CHAPTER 36. RATES." https://statutes.capitol.texas.gov/Docs/UT/htm/UT.36.htm (accessed Oct. 18, 2022).
44. [44] "IURC: Rate Case Overview & Process." https://www.in.gov/iurc/about-us/rate-case-overview-and-process/ (accessed Oct. 18, 2022).
45. [45] B. Terzic, "The Interface between Utility Regulation and Financial Markets Acknowledgments and Disclaimers," Washington D.C., Nov. 2018.
46. [46] "General Rate Case." https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-rates/general-rate-case (accessed Oct. 18, 2022).
47. [47] "Major Rate Case Process Overview." https://www3.dps.ny.gov/W/PSCWeb.nsf/0/364D0704BEEC5B7D85257856006C56B3?OpenDocument (accessed Oct. 18, 2022).
48. [48] Frank M. Bass, "A New Product Growth for Model Consumer Durables," Management Science, vol. 15. pp. 215-227, 1969. [DOI:10.1287/mnsc.15.5.215]
49. [49] IRENA, "Renewable Power Generation Costs in 2019," Abu Dhabi, 2020.
50. [50] Edison International Co., "2019 Financial and Statistical Report," Rosemead, California, 2020.
51. [51] S. Quoilin, K. Kavvadias, A. Mercier, I. Pappone, and A. Zucker, "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Appl Energy, vol. 182, pp. 58-67, 2016, doi: 10.1016/j.apenergy.2016.08.077. [DOI:10.1016/j.apenergy.2016.08.077]
52. [52] OECD, "Population (indicator)." 2021. doi: 10.1787/d434f82b-en. [DOI:10.1787/d434f82b-en]
53. [53] P. J. Burke and A. Abayasekara, "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," Energy Journal, vol. 39, no. 2, pp. 87-102, 2018, doi: 10.5547/01956574.39.2.pbur. [DOI:10.5547/01956574.39.2.pbur]
54. [54] S. Ramyar, A. L. Liu, and Y. Chen, "Power Market Model in Presence of Strategic Prosumers," IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 898-908, 2020, doi: 10.1109/TPWRS.2019.2937887. [DOI:10.1109/TPWRS.2019.2937887]
55. [55] A. Ford, "Waiting for the boom: A Simulation Study of Power Plant Construction in California," Energy Policy, vol. 29, no. 11, pp. 847-869, Sep. 2001, doi: 10.1016/S0301-4215(01)00035-0. [DOI:10.1016/S0301-4215(01)00035-0]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control (English Edition)

Designed & Developed by : Yektaweb