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Abstract- The extended Kalman filter (EKF) is a widely 

used algorithm for nonlinear estimation of Inertial 
Navigation Systems (INS) and the Global Position System 
(GPS) integration. However, EKF has several limitations, 

such as linearization dependency, and the model error 
statistics are assumed as a zero-mean Gaussian noise with 
known covariance. Consequently, if EKF is not tuned 

correctly, the INS error predictions can quickly diverge.  

To overcome the limitations of existing Kalman 
algorithms, this paper derives a real-time predictive 

approach. The proposed method increases the accuracy and 
the reliability requirements of loosely INS/GPS integration 
by estimating the unknown model errors of sensors without 

augmenting the state space. Also, considering the 
insufficiency of the researches on the integrated navigation 
in tangent (launch) frame, this research derives the 

navigation equations in tangent frame and its error model 
is analyzed. The estimation performance of the predictive 
approach is analyzed.  

The performance is verified using an experimental data 
acquired from a land-vehicle test. The results of predictive 
filter demonstrate superior performance to the traditional 

EKF. The test results of land-vehicle navigation validate the 
advantages of the presented method, which increases the 
position accuracy by an amount of 70% and it decreases the 

computational cost to 50% and improves the estimation 
performance for the integrated INS/GPS better than the 
traditional EKF. This test is a fundamental step to 

determine the capability of the filter for robotics and 
aerospace applications in future. 

Keywords: Extended Kalman filter, Incremental 

predictive filter, INS/GPS, Land-vehicle test, Tangent 

frame.   

I. INTRODUCTION 

O interpret the necessity of the new predictive 

filtering method for integrated INS/GPS, this section 

reviews the state of the art of INS/GNSS integration 

regarding the principles of inertial navigation and the 

most common estimation methods for inertial navigation. 

With the rapid development of strap-down inertial 

navigation systems based on micro-electro-mechanical 

systems (MEMS) technology, as well as the regular 

improvement of the global navigation satellite system 

(GNSS), the INS combines with the GNSS to improve 

the precision of navigation systems [1]. The integrated 

navigation systems are used in different navigation 

applications, such as land vehicle navigation 

applications, robotics [2], missiles guidance [3-5], and 

reconnaissance aircraft. The INS/GPS integration has 

many designs [6-11], that depends on the application’s 

nature which uses the integrated navigation [12]. This 

variety of solutions comes actually from the architecture 

of the integration [13]. There are three main architectures 

of INS/GPS integration, namely loosely, tightly and 

ultra-tightly couplings [7, 10, 14]. The loosely 

architecture is the more common integration techniques 

[7]. In the loosely-coupled architecture the GPS solution 

(position and velocity) is merged with the inertial based 

information to obtain the final output of the integrated 

system. 

Traditionally, the outputs from INS sensors and GPS are 

combined using the EKF [15] or other alternative KF 

algorithms [16]; to produce the best estimate of the actual 

vehicle states. Recently, there exist several classes of 

research concerning INS/GPS filtering methods for 

integrated navigation. The filtering methods can be 

categorized as follows: the minimum mean-square error 

(MMSE) based methods, such as the extended Kalman 

filter (EKF) [17], the sampling-based methods, such as 

the unscented Kalman filter (UKF) [9]and particle filters 

Generalized Incremental Predictive Filter for Integrated 

Navigation System INS/GPS in Tangent Frame 

Nemat Allah Ghahremani1* and Hassan Majed Alhassan2 

1 Faculty of Electrical & Computer engineering, Malek Ashtar University of Technology, Tehran, Iran. (e-mail: 
Ghahremani @mut.ac.ir). 

2 Faculty of Electrical & Computer engineering, Malek Ashtar University of Technology, Tehran, Iran. (e-mail: 
hassan.majed.alhassan@gmail.com) 

*Corresponding Author 

Received 26 Nov 2021 Received in revised form 27 Feb 2022 Accepted 8 Apr 2022 

Type of Article: Research paper 

T 

 [
 D

O
I:

 1
0.

52
54

7/
jo

ce
e.

1.
1.

49
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 jo
ce

e.
kn

tu
.a

c.
ir

 o
n 

20
25

-0
7-

03
 ]

 

                             1 / 11

mailto:hassan.majed.alhassan@gmail.com
http://dx.doi.org/10.52547/jocee.1.1.49
https://jocee.kntu.ac.ir/article-1-35-en.html


N. Ghahremani et al.: Generalized Incremental Predictive Filter for Integrated Navigation System INS/GPS in Tangent Frame 

 

50 

 

(PF) [18], the artificial intelligence methods (AI) [19], 

such as the artificial neural networks or the adaptive 

neuro-fuzzy inference systems (ANFIS) [20], and the 

predictive filtering or model predictive filtering (MPF) 

[21] to track measurement output by using prediction 

output to estimate model error of the system. Also, there 

are some recent researches use the adaptive Kalman filter 

(AKF) for INS/GPS integration [22, 23]. The AKF 

adjusts the value of the noise covariance matrices for the 

system (Q) and measurement (R) only, therefore, the 

AKF is not robust to model error. 

The extended KF plays the principal role in estimation 

and navigation software design and it has been widely 

applied in navigation applications [24-26]. However, 

EKF assume that true system model is known with 

certainty and EKF uses the Taylor series expansion on 

the nonlinear system equations and takes the first-order 

terms to provide a suitable solution to some extent with 

nonlinearities. Therefore, the EKF is not optimal filter (as 

KF) for solving the problem of nonlinear system state 

estimation and cannot guarantee the estimation stability. 

Compared with other nonlinear filter methods, 

predicative filter can estimate model error, so it has 

developed rapidly [27-29]. The applications of the MPF 

have been reported in various fields such as navigation, 

attitude determination[30, 31]. The conventional 

predictive filter, due to the use of Lie derivatives in its 

formulation [32], has a very complex mathematical 

algorithm. Its complexity makes the design of the 

predictive filter a very time-consuming and inflexible 

process [33]. 

The main objective of this research is optimizing the 

estimation procedure of the INS/GPS integrated system 

by replacing the conventional EKF formulation of the 

integration by an incremental predictive one. The new 

real-time algorithm named generalized incremental 

predictive Kalman filter (GIP_KF) is superior to the EKF 

as it provides a means to accommodate irregular 

situation. This enhances the reliability and accuracy of 

the integrated INS/GPS in kinematic applications. To 

achieve the goal of this research, verification of the 

proposed algorithm is performed in tangent frame both 

by using real navigation data for ground vehicle. A 

thorough analysis is carried out to show the effectiveness 

and suitability of the predictive technique. It is shown 

that the GIP_KF is outperforms the EKF and it has 

potential for navigation applications requiring high 

reliability and accuracy. 

The remainder of this paper is structured as follows: 

Section 2 presents the derivation of INS/GPS 

mechanization in tangent frame. Section 3 covers the 

predictive filtering theory and implementation for 

INS/GPS integrated system. The equivalent model error 

is derived for INS systems, and then the derivation of the 

incremental predictive filter is given in details. Section 4 

explores a comparative INS/GPS integration using 

GIP_KF and EKF. Also, it provides the results of the 

experimental testes. Finally, section 5 summarizes the 

work done in this research and concludes the major 

results and findings. 

II. INS/GPS INTEGRATION IN TANGENT FRAME 

The tangent frame (t-frame) is considered stationary 

relative to the center of the rotating earth since the origin 

of coordinates does not move with the vehicle but rather 

remains fixed at the point of initialization (at start time 

t0). In this case, while the IMU moves with the vehicle, 

its orientation relative to the earth remains fixed at its 

initial value (see Fig. 1). Therefore, this frame is a good 

reference frame to navigation calculations.  
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Fig. 1. The tangent frame, Body Frame Geodetic, ECEF, and 

local NED coordinate systems for terrestrial vehicle 

 

The t-frame takes advantage of the fact that constant IMU 

rates can be precisely determined at start-up. t-frame is 

usually employed when the travelled distance is limited. 

The tangent frame is also known as the launch point 

inertial frame (LPI) [34], or launch-centered earth-fixed 

(LCEF) frame [35-38]. Some kinds of literature confused 

between the local-level frame and tangent frame, for 

example, [39] define the l-frame as the tangent plane 

reference system. So our tangent frame definition differs 

from [39]. In this paper the tangent frame is identical to 

the tangent plane coordinates that is defined in reference 

[40]. 

In this section, the INS navigation equations are resolved 

in the tangent frame. Firstly, The GPS solution, 

expressed in earth geodetic, is converted to the tangent 

frame to achieve compatibility between the GPS and INS 

data. Hence, the required coordinate systems conversions 
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are presented. Secondly, the inertial navigation algorithm 

is expressed relative to the tangent frame; the attitude 

algorithm uses the quaternions approach, then, the 

velocity/position algorithm is achieved. 

A. Transformation position and velocity vectors from 

geodetic frame to tangent frame 

Transformation position and velocity vectors from 

geodetic frame to tangent frame 

The GPS output is defined in the geodetic frame (g-

frame) in terms of longitude, latitude, and height (or 

altitude). g-frame is a coordinate frame fixed to the 

earth’s surface, based on the WGS 84 ellipsoid model. 

The position vector transformation from the geodetic 

system to the ECEF coordinate system is an intermediate 

step in converting the GPS position measurement to the 

local NED coordinate system or navigation frame (n-

frame). The n-frame is based on the local horizon and its 

origin coincides with sensor frame. Given a point in the 

geodetic system, say  
Te

g h =r ,     then GPS 

coordinates can be converted into ECEF frame using the 

following equations [3]: 

2

( ) cos cos

( )cos sin

[ (1 ) ]sin

e

e

g e

e

x N h

y N h

z N e h

 

 



+   
   

= = +
   
   − +   

r   (1) 

Since the origins of the e-frame and the n-frame are not 

identical, only difference vectors are converted. Then, 

 
0

,0

,0

,0

( )

n e e

n n e e n

g n e g g e e e

n e e

x x x

y y y

z z z

     
     

= = − = −     
           

r C r r C   (2) 

Where, the vector 
0

e

gr  is the position of the origin of the 

local NED frame. 

0

,0 0 0 0 0

,0 0 0 0 0

2

,0 0 0 0

( ) cos cos

( )cos sin

[ (1 ) ]sin

e

e

g e

e

x N h

y N h

z N e h

 

 



  + 
   

= = +   
   − +  

r  (3) 

n

eC is the rotation matrix from the ECEF frame to the 

local NED frame, which is given by 

0 0 0 0 0

0 0

0 0 0 0 0

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

n

e

    

 

    

− − 
 

= −
 
 − − − 

C      (4) 

The parameters 0  and 0  are the geodetic longitude and 

latitude corresponding to ,0er . On another hand, because 

the origin of the initial starting point for n-frame and n-

frame are separated (not same), the transformation matrix 

0n

nC  from n-frame to n0-frame can be approximated to the 

following relation: 

( ) ( )

( ) ( )

( ) ( )

0

0

0 0

0

0 0

0 0

0 0

1

1

1

n

n

S

S C
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   
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 − − −
 

= − − − − 
 

− −  

C  (5) 

The transformation matrix 
0

t

nC from n0-frame to t-frame 

is given as follows. 

0

0 0

0 0

0 0

0 0

cos 0 sin 1 0 0

0 1 0 0 0 1

sin 0 cos 0 1 0

cos sin 0

0 0 1

sin cos 0

t

n
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C

             (6) 

Where, the angle 
0Az  is the vehicle azimuth at initial 

time t0. Therefore, 

0

0 0 0
( ) ( )

nt t n e e t n e e

g n n e g g n e g g= − = −r C C C r r C C r r   (7) 

where, 
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C

 (8) 

The GPS gives the velocity of the carrier observed on the 

earth frame, which is different from the velocity observed 

in the tangent frame. The relations between them are 

derived in the following equations: 
t t t t t

t e te g e= +  =v v ω r v   (9) 

The vector b

tbω  is angular rate of the body (vehicle) frame 

relative to the t-frame, resolved in the body t t e

e=v C v . 

Because t
v is the velocity of the vehicle relative to the 

tangent frame, then equation (9) is the velocity correction 

formula, written in the form of components in the tangent 

coordinate system. Having explained the coordinate 

system, the next step is to represent the vehicle system 

relative to these frames. Note that the gyro data need to 

be integrated only once for determining the 

transformation matrix
t

eC , but the (transformed) 

accelerometer measurements have to be integrated twice 

for position determination. These integrations lead to the 

accumulation of measurement errors over time 

experienced in every type of INS. 

 [
 D

O
I:

 1
0.

52
54

7/
jo

ce
e.

1.
1.

49
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 jo
ce

e.
kn

tu
.a

c.
ir

 o
n 

20
25

-0
7-

03
 ]

 

                             3 / 11

http://dx.doi.org/10.52547/jocee.1.1.49
https://jocee.kntu.ac.ir/article-1-35-en.html


N. Ghahremani et al.: Generalized Incremental Predictive Filter for Integrated Navigation System INS/GPS in Tangent Frame 

 

52 

 

B. Navigation Equations in tangent frame 

The inertial navigation equations are a set of differential 

equations, which relates the inertial quantities measured 

within the inertial frame to the navigation quantities in 

the t-frame. 

1. Attitude Equations with Quaternion Algorithm 

The quaternion differential equation provides a relation 

between the input angular rates and the attitude 

quaternion and it can be expressed in matrix form 

1 1
[ ] [ ]

2 2
b=  = q ω q q ω  (10) 

where   represents the quaternion product between two 

quaternions as in [52], and 0, , ,
T

b x y z   =  ω is the 

quaternion form of the angular rate (vector in three-

dimensional space can be regarded as a quaternion with 

zero scalar). To solve equation (10), a similar method to 

that used in the DCM can be applied. That is applying the 

integration factor method, using the rotation vector for 

the angle integration during the update interval. 

Therefore, 

  
sin(0.5 )

( ) (cos(0.5 ) (0)t





 
=  +    

q I θ q     (11) 

where I is the matrix form of the unit quaternion, [1 0 0 

0]T, and   θ is for the quaternion of the rotation 

vector, 

 

2 2 2

0

0

0

0

, ,

( ) ( ) ( )

x y z

x z y

y z x

z y x

x x y y z z

x y z

d d d

  

  

  

  

        

   

− − − 
 
  −
   =
  − 
 
  −  

 =  =  =

 =  +  + 

θ

 (12) 

To preserve the normality, the computed quaternion 

should be periodically normalized by dividing the 

quaternion ( 1)k +q by its magnitude ( 1)k +q . With the 

initial conditions at lift-off, the quaternion parameters 

can be propagated using equation (11). As done for the 

Euler attitude angles. Using the instantaneous quaternion 

parameters, the
t

bC matrix is computed as 

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 3 2 0 1

2 2 2 2

1 3 0 2 3 2 0 1 0 1 2 3

- - 2( - ) 2( )

2( ) - - 2( - )

2( - ) 2( ) - -

t

b

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

=

 + +
 

+ + 
 + + 

C

 (13) 

2. Velocity and Position Equations 

The t-frame is assumed to be fixed relative to the center 

of the earth then, the rate velocity of the earth and t- frame 

system is equivalent, therefore: 

0,t t t

et ie it=  =ω ω ω                 (14) 

For navigation in t-frame, the gravitational acceleration 

thus computed in ECI frame can be transformed to t-

frame, by using the transformation matrix t

iC as shown 

below: 

2t t b t t t

b ie= + − v C f g ω v  (15) 

where
b

f represents the specific force acceleration, 

0

t t t i

ie i ie= =ω ω C ω . In summary, the continuous-time 

navigation equations in the t-frame are:  

0

0

2

t t

t t b t t t

b

t t b t

b b ib

=

= + − 

   =  −    

r v

v C f g ω v

C C ω ω

  (16) 

where the matrix t

bC  is a direction cosine matrix used to 

transform the measured specific force vector to t-frame. 

The matrix b

tb
  ω  is the skew symmetric form of b

tbω   

the body rate relative to t- frame.  
b b b t

tb ib t ie= −ω ω C ω   (17) 

A block diagram representation of the t-frame 

mechanization is shown in Fig. 2. 
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Fig. 2. Navigation computation in t-frame 

C. Errors Model in Tangent frame 

The errors that require to be estimated include 

misalignment attitude, position errors, velocity errors, 

and sensor uncertainty errors. They are defined as the 

deviations of the computed values from the true values. 

The perturbation method is used to linearize the nonlinear 

system differential equations. The errors in the position, 

velocity and attitude are defined as the estimated quantity 
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minus the true quantity as follows: 

2

t t

t t t t t t b t

it b

t t b t t

b ib it

 

   



=

= − −  + +

 = − −  

r v

v E f ω v C f g

ε C ω ω ε

 (18) 

or 

3 3 3 3 3 3

3 3

3 3 3 3

3 3 3 3

3 3

3 3

0 0

0 2

0 0

0 0

0

0

t t

t t t t

it

t t
t

it

b

t

b b

t ib

b

 

 





  



 

 





 
    
       = −  −        
         −   

 
  

+   
  − 

Ir r

v ω f v

ε εω

f
C

ω
C

         (19) 

The INS error equation forms a basis to formulate the 

indirect filter in this paper, where 

( )

( )

0 0

0

0 0

cos cos( )

sin( )

sin cos( )

e

t t i

it i ie e

e

Az

Az

 

 

 

 
 

= =  
 − 

ω C ω  (20) 

D. Modified INS Error Equations for IP-EKF 

Equations (16) are linearized to obtain a linear state error 

model using the perturbations analysis method [28]. 

Position error, velocity error, and attitude error are 

expressed as follows, ˆt t t = −r r r , ˆt t t = −v v v , 

ˆb b b =  −f f f , and ˆb b b

ib ib ib =  −ω ω ω . Where   is 

the error of the corresponding quantity. Using the 

perturbations method the state error equation is expressed 

via: 

( ) ( ) ( ) ( ) ( )t t t t t = + +x F x m w   (21) 

The error state vector contains 9 parameters as follows, 
T

t t t   =  x r v ε , where tr is the position error vector 

(m), t v  is the velocity error vector (m/sec) and t
ε  is 

the attitude error vector (rad). The vector t
ε contains the 

small-angle between the earth frame and the computed 

earth frame. In addition, the vector ( )tm is the unknown 

model error to be predicted in the proposed incremental 

predictive algorithm, and the transition matrix ( )tF is 

determined as follows: 

3 3 3 3 3 3

3 3

3 3 3 3

( ) 2 t t

it

t

it

t

  



 

 
 
    = −  −     
  −   

0 I 0

F 0 ω f

0 0 ω

 (22) 

The 3 30 is the matrix which all its elements are zero, 3 3I

is the unite matrix. Further, t  f is the skew-symmetric 

matrix form of 
t t b

b=f C f ; the input specific force 

acceleration in the t-frame. The matrix t

it
  ω  is the 

skew-symmetric matrix form of t

itω , the earth rate 

resolved in the t-frame. To formulate the discrete GIP-

KF, it is necessary to express (21) in discrete form. 

Therefore, 

1k k k k k + = + +x F x m w  (23) 

where the vector 
k x is the state error at time k, 

km is 

the model error vector, 
kw is additive system noise, and 

kF is the state error transition matrix. For small time 

interval (
1k kdt t t+= − ), the matrix 

kF is expressed in 

term of F( )t  as follows: exp( ( ) ) ( )k t dt t dt=  +F F I F . 

It is evident that the cost function (32) is well posed 

because it uses the unknown incremental model error 

ˆ
km rather than ˆ

km with nonzero mean. The proposed 

cost function is unbiased with 1 1
ˆ

k k + +=y y and 

ˆ 0k =m .  

At 
1kt −
 equation (23) gives 1 1 1 1k k k k k − − − −= + +x F x m w

and by subtraction this equation from equation (23), 

incremental form of the error model is obtained by  

1 1 1( )k k k k k k k  + − − = − +  + x F x F x m w , 

where 1k k k − = −w w w ,
1 1( )k k k  + + = −x x x ,and 

1k k k − = −m m m . Therefore, 

1 1 1( )k k k k k k k  + − −= + − +  + x I F x F x m w          (24) 

Equation (24) contains the model error changes 

(increments) 
km . The term  in (24) indicates to 

presence of integrals in the system. This eliminates the 

static error in the estimate. In (24), future state error (at 

1kt + ) is predicted according to state error at the moments 

kt and 
1kt −
. The measurement model observes the 

differences of estimated position and velocity error 

between INS and GPS. The observation equation for the 

GIP-KF algorithm is written as follows: 

1 1 1k k k + + += +y H x v               (25) 

where the vector error 1k +y express the vector 

measurement at time 1kt + . The vector 1k +x  is the state 

error. The measurement noise 1k +v is Gaussian white 

noises with zero mean and covariance matrix , 1v k +R . The 

measurement matrix H is as follows: 

3 3 3 3 3 3

3 3 3 3 3 3

  

  

 
=  
 

I 0 0
H

0 I 0
 (26) 

It is assumed that, the process noise kw and 

measurement noise 1k +v are uncorrelated, zero-mean 

white-noise processes with known symmetric positive 
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semi-definite covariance matrices ,kQ and , 1v k +R , 

respectively. The initial random state error, 0 x has a 

mean 0
ˆ x and covariance matrix 

0P . Therefore, the 

optimal estimate of the state error 
1k +x , which is 

denoted by 
1

ˆ
k +x , that minimizes the expectation of the 

squared-error cost function 
2

1 1
ˆ( )k kE  + +−x x . The 

solution is the following predicted state error: 

1/ 1 1

1/ 1

ˆˆ ˆ ˆ( )

ˆ ˆ

k k k k k k k

k k k

  

 

+ − −

+ +

= + − + 

=

x I F x F x m

y H x
    (27) 

where the vector 1x̂ n  , 1ˆ m y ,
1m̂ n  , 

F n n , and H m n . In (27), the proposed filter uses 

both current and previous states. The unknown model 

error input m̂k is predicted using the proposed approach 

as described in the next section. 

III. PROPOSED FILTERING ALGORITHMS DERIVATION 

This section demonstrates the strategy of the GIP_KF 

algorithm to estimate the unknown model error ˆ
km . The 

incremental form of the state space that is modelled in 

equation (23) can be written as follows: 

1/
ˆ ˆ

k k k k k+ =   +x F x m  (28) 

where 1/ 1/
ˆ ˆ ˆ ,k k k k k + + = −x x x 1

ˆ ˆ ˆ ,k k k  − = −x x x

1
ˆ ˆ ˆ

k k k − = −m m m  and 1k k k − = −F F F . By writing this 

form we can get the model error signal changes km . In 

fact, when we add   to the above equations, it means 

adding integrals to the system. This eliminates the static 

error in the estimate. By combining the above equations, 

the equation one step ahead is obtained as follows: 

1/ 1 1
ˆˆ ˆ ˆ( )k k k k k k k+ − −= + − + x I F x F x m  (29) 

where I is the unit matrix. In this equation, states are 

calculated in moment k+1 according to moments k and k-

1. The minus sign of this relation is actually a kind of 

derivation of states in this method. The prediction of 

system outputs can be stated as the following compact 

equation: 

1/ 1 1 1 1 1
ˆˆ ˆ( )k k k k k k k k k k+ + + − − += + − + y H I F x H F x H m (30) 

where
1ˆˆ, n x m ,

1ˆ my , n nF ,and m nH . 

Equation (30) can be rewritten as follows: 

1/ 1 2 1 3
ˆˆ ˆ

k k k k k+ −= − + y H x H x H m  (31) 

where, 1 1( )k k+= +H H I F , 2 1 1k k+ −=H H F and 3 1k +=H H . 

A. Definition and minimization of the cost function 

To achieve the optimal solution of ˆ
km , a cost 

function consisting of the measurement residual term and 

the model error increment term is defined as follows: 

( ) ( )1 1 1 1 1
ˆ

ˆ ˆˆ ˆmin = 
k

T y T m

k k k k k k k k+ + + + +


− − +  
m

J y y R y y m R m  (32) 

where 
1yk +
is output reference at time k+1, the positive 

semi definite matrices m

kR and
1

y

k +R are weighting 

matrices of reference tracking error and increment input 

moves. These matrices are the filter tuning parameters. 

When m

kR decreases, more model error is added to correct 

the model, so that the estimates more closely follow the 

measurements. When m

kR increases, less model error is 

added, then the estimates more closely follow the 

propagated model. Finding optimal increment input 

which minimizes quadratic cost function (32) represents 

optimization problem, in the case when there are no 

constraints, the optimal increment input can be found as 

an analytic solution as follows: 

( )*

1 1 2 1
ˆ ˆ ˆGIPKF

k k k k k+ − = − +m K y H x H x  (33) 

where the gain of GIP_KF filter is: 

( )1

3 1 3 3 1 1 1 2 1
ˆ ˆ( )GIPKF T y m T y

k k k k k k k

−

+ + + −= + − +K H R H R H R y H x H x

 (34) 

As shown in equations (29) and (34), the proposed 

filter uses both current and previous states rather than the 

current state to predict the unknown model error input 

and the current and previous states create the weighted 

difference term in the optimal solution of the model error. 

B. GIP-KF Prediction and correction loop 

The optimal increment model error is calculated from 

equation (29). The predicted error state estimate at stage

1k + , given the measurements up to stage k+1, can be 

given by: 

1/ 1 1

1 1 1/

1/

ˆˆ ˆ ˆ( )

ˆ ˆ

k

k k k k k k k

k k k k

T

k k k k k

+ − −

+ + +

+

 = + − + 


=


= +

x I F x F x m

y H x

P F P F Q

  (35) 

 

 

1 1

1

1 1/ 1 1/ 1

1 1/ 1 1 1

1 1 1 1/

ˆ ˆ ˆ

k k

T T

k k k k k k k

k k k k k k

k k k k k

+ +

−

+ + + + +

+ + + + +

+ + + +

  = + 


= + −


= −

K P H H P H R

x x K y y

P I K H P

  (36) 

where 1k +K is the Kalman gain, which defines the 

updating weight between new measurements and 

predictions from the system dynamic model. The 

innovation sequence is defined as  1 1
ˆ

k k+ +−y y . Equations 

(32) through (34), present the GIP-KF method of 

estimating the incremental model error and the 

perturbation part of the state. The algorithm has 

automatic repair statistical characteristics of model error 

that improve filtering precision. After applying the first 

model error move of optimal sequence to system, new 

output is measured and new optimal model error 

sequence ˆ
km is computed. The simplified GIPKF 

framework algorithm is illustrated in Fig. 3.  
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Cost Function 
Optimization

Time Update

Measurement Update

ˆ
km

Navigation Errors 
Parameters

IMU

GPS

Navigation 
Equations

GIP_KF

Model Error Prediction

State Error Estimation

Model Error Compensating

 
Fig. 3. The simplified GIP_KF framework algorithm for INS/GPS 
integration 

IV. SIMULATION RESULTS 

In this section, a real car test for the verification of the 

performance of the GIP_KF proposed in the research will 

be investigated. The prototype of a real-time integrated 

system consists of an IMU type AIDS16488A which is 

integrated with a GPS receiver type GARMAIN, and an 

on-board computer. Fig. 4 shows the hardware that are 

used in the test, in order to implement the navigation 

equations. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. The hardware adopted in the experiment 

A. Analysis of the results  

The performance is analyzed during GPS outages 

using the values of the estimated navigation parameters 

(…, position, velocity, attitude, …) of the proposed IPKF 

method and the extended Kalman filter. The robustness 

of the navigation system during GPS outages is tested 

with three duration of GPS outages of 10, 11, and 22 

seconds as is illustrated in Fig. 5. 

 
Fig. 5. The tested trajectory 

 

Fig. 6 shows a significant reduction in position error 

growth during the GPS outages when the proposed filter 

is used. This figure indicates that the estimated positions 

by EKF are increased rapidly when the GPS signal is not 

available. According to the above results of the 

trajectory, the filtering accuracy of the GIP-KF is better 

than that of the EKF. When the GPS has an outage, the 

EKF immediately diverges. This proves that when an 

outage occurs, compared with the EKF, the IP-EKF has 

strong robustness, and it predicts the model error in each 

time step. In this case, the proposed filter has higher 

accuracy for INS/GPS online correction when the model 

error is unknown. 

 
Fig. 6. The estimated trajectory by GIP-KF and EKF 

 

In Fig. 7, it can be seen that IP-EKF results are more 

accurate than the extended Kalman filtering for position 

errors of horizontal plane. The EKF gives an error 

magnitude of about 455 m, after 22 sec (outage 3), while 

the error magnitude of the proposed filter is around 82 m, 

after 22 sec (outage 3). The EKF estimation performance 

in both horizontal directions is highly degraded 

compared to the GIP-KF estimation performance during 

the third GPS outage. Fig. 7 shows about 80% reduction 

in position errors during GPS outages in the case of using 
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the GIP-KF. 

 

 

 
(a) 

 
(b) 

Fig. 7. The estimated horizontal (x and z) position for the tested 
trajectory by GIP-KF and EKF 

 

The horizontal navigation errors and vehicle trajectory 

in terms of the root mean square error (RMSE) and the 

mean error of vertical axis are given in Table.2. The 

calculated RMSE for the horizontal errors and the mean 

vertical error demonstrate good performance of the 

proposed filter relative to the tradition EKF (15 states).  

 
TABLE I 

THE HORIZONTAL NAVIGATION ERRORS 

 RMS of horizontal position error 
(m) 

Algorithm IP-EKF EKF 

Total trajectory with 3 
outages 

15.15 79.63 

 

The case when observing the linear velocities of 

vehicle from IP-EKF and EKF are also shown in Fig. 8. 

The comparison of the results shows that in the case of 

IP-EKF, the velocity error growth during the GPS outage 

is decreased.  

It is clear from the previous figures that the IP-EKF 

approach is more accurate and robust than the traditional 

EKF witch not converge rapidly after the long GPS 

outage (the third case when the GPS is blocked for 22 

sec.), while the new filter converges to the true velocities 

more rapidly. 

 
(a) 

 
(b) 

Fig. 8. The estimated x and z velocity for the tested trajectory by 
GIP-KF and EKF 
 

The quality of the information provided by the sensors 

in the navigation system has a direct influence on the 

overall system’s performance. The sensors model error 

information play an equivalent role in the estimation of 

the vehicle state. It is clear, that navigation system 

performance is enhanced by compensating for model 

error in real-time. Fig. 9 shows the estimated biases for 

the accelerometers and the gyroscopes using GIP-KF and 

EKF. 

 
(a) 

 

(b) 

 

 

 

( 

b 

 

Fig. 9. The estimated biases for the accelerometers (a) and 
gyroscopes (b) by IP-EKF and EKF 
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Fig. 10 presents the estimated attitude for IP-EKF 

and EKF; the results show that the GPS outages not 

influence the attitude estimate. 

 
Fig. 10. The estimated attitude by IP-EKF and EKF 

 

In this section, the GIP-KF was validated during a real 

experiment for the INS/GPS integrated navigation and 

with simulation of a car test, which demonstrates the 

effectiveness of the proposed GIP-KF in terms of 

positioning accuracy compared to the EKF.  

B. Analysis of the performance of the proposed method 

The validity of the proposed filter is verified using 

loosely coupled MEMS INS/GPS experimental data. To 

realizes and analyze the performance of the proposed 

approach, the IP-EKF is compared to EKF. The 

integration algorithm uses an augmented model of EKF 

with 15 states and IP-EKF with only 9 states. The results 

demonstrate that the new filter is more robust to GPS 

outages than EKF. The paper implements the 

approximate calculations of the number of floating-point 

operations per second (FLOPS) performed for a given 

algorithm. As a result, 30800 FLOPS are needed in each 

cycle, of EKF algorithm, while GIP-KF requires only 

15050 FLOPS. Therefore, the GIP_KF decreases the 

computational cost to 50% and increases the accuracy of 

the horizontal position error by an amount of 81% 

comparing to EKF. Also, it improves the speed of 

estimation convergence comparing to EKF. Therefore, 

IP-EKF can be used in real-time, with high reliability and 

accuracy. 

V. CONCLUSIONS 

This paper presents a novel incremental predictive 

approach to increase the performance of the extended 

Kalman filter for integrated INS/GPS when the GPS is 

blocked. Since the performance of the combined 

INS/GPS degrades during the GPS outage because of the 

remarkable model error of the MEMS-IMU, the 

conventional EKF may become unstable, and its 

convergence is not confirmed. Further, the degree of 

observability of some error states is inadequate due to the 

state's augmentation. The proposed algorithm predicts 

and compensates for the unknown model error of sensors 

by minimizing a quadratic cost function consisting of a 

measurement innovation and the incremental model error 

term.  

The research demonstrates formulation, the 

deterministic full observability, stability, and 

convergence of the proposed filter. The test results of 

land-vehicle navigation validate the advantages of the 

presented method, which increases the position accuracy 

by an amount of 81% and it decreases the computational 

cost to 50% and improves the estimation performance 

This test is a for the integrated INS/GPS better than the 

traditional EKF.  
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