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Abstract—Designing linear MPC with pre-specified 

closed-loop characteristics for stability and robustness con-

sideration as well as optimal time domain performance, is 

an interesting issue. In this paper, we develop a new ena-

bling formulation, which can explicitly show existence and 

properties of the linear controller counterpart for transfer 

function-based MPC, known as Generalized Predictive 

Control. This development allows one to transform desired 

closed loop specifications to constraints on new-defined var-

iables of the GPC optimization problem along with desired 

time domain performance-related design parameters. Input 

output constraints also can be transformed to constraints on 

these new variables. Fantastic results are illustrated by an 

ongoing example. It is a unified approach to answer some 

key questions in both theory and application such as analy-

sis and design for desired performance, stability and robust-

ness, controller matching, reference governor GPC, and de-

sign of model reference predictive control in data-driven 

control. 

 
Keywords: model predictive control, pole-placement pre-

dictive control, optimal control, robust control, controller 

matching.  

 

I.INTRODUCTION 

ODEL predictive control (MPC) is the most applied 

advanced control scheme due to its attractive fea-

tures. However, in contrast with other linear control tech-

niques, closed-loop properties such as stability and ro-

bustness are usually not taken into account in MPC de-

sign [1]. Thus, the general question: “how MPC closed 

loop characteristics can be analysed and shaped, and how 

 
 

trade-off between stability and performance can be for-

mulated and optimized?” has been raised from the early 

times of its development. It is well-known that every lin-

ear transfer function-based MPC (Generalized Predictive 

Control –GPC) can be transformed to a linear controller 

(general two-degree of freedom -RST- controller), and its 

characteristics can be analyzed by its counterpart instead 

[2]. So specific questions which arise are: 1) What rela-

tionships are there between GPC design parameters and 

counterpart RST controller terms? 2) For a desired closed 

loop characteristic polynomial, how design parameters of 

the counterpart GPC can be calculated or, should be se-

lected? 3) When closed loop poles of a GPC set according 

to given requirements, how many degrees of freedom re-

main for time optimality performance consideration? 4) 

How constraints handling capabilities of the MPC can be 

considered along with closed loop characteristic require-

ments? 

There are two different approaches to the problem. In the 

first approach, influences of the MPC design parameters 

on closed loop tracking transient response, including rise 

time and error as performance indicator and overshoot 

and settling time as robustness indicators, have been 

studied and some guidelines were suggested for tuning 

MPC (See [3] and review papers [4], [5], [6] and refer-

ences there in). 

The second approach, which is also followed in this pa-

per, has been studying relationships between MPC design 

parameters and its counterpart linear controller terms. 

Mohtadi and Clarke [7] showed that both linear quadratic 

(LQ) and pole-placement control can be derived using 

GPC framework by choosing appropriate horizons and 
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design polynomials. Fikar et.al. in [8] studied relation-

ships between stable predictive control and pole place-

ment. Landau and his colleagues [9] have mentioned that 

every RST controller is a one step ahead MPC, and an 

RST controller can be designed in the time domain using 

one step ahead MPC strategies, as already showed by 

Camacho and Bordons in [2] and references therein. 

Cairano and Bemporad in [1] addressed the following in-

verse problem: “how to select the performance index (in 

particular, the weighting matrices) of a linear MPC con-

troller so that it behaves as a given favorite linear con-

troller when the constraints are not activated”. The prob-

lem also has been addressed as pole restricted GPC to 

find control weights to put closed loop poles in a desired 

- although shaped to be solvable - region in the 𝑧-plane 

[10]. Hartley and Maciejowski in [11] proposed a method 

using the observer-compensator realization of a more 

general class of stabilizing LTI output feedback control-

lers. Tran and colleagues in [12] proposed a method for 

finding weighting matrices in the cost function that will 

result in the GPC gain as required. Shah and Engel in [13] 

followed transfer function formulation of the problem to 

calculate GPC tuning parameters, but for some simplified 

cases. 

However, although there have been many studies on the 

subject, some basic and important questions were ignored 

or answered incompletely. Among them are explicit lim-

itations on, and relationships between, GPC design pa-

rameters and orders of RST controller terms, plant model, 

and closed loop characteristic polynomial, which should 

be considered appropriately in defining requirements.  

Also there are some degrees of freedom which should be 

recognized. In this paper we focus on two important is-

sues. At first we reformulate GPC in a well-suited form 

which facilitates structural analysis of it and its counter-

part RST controller in detail. Next we propose a new 

method to transform pole-placement designed RST con-

troller to equality constraints on GPC controller gain. 

This derivation enables us to analyze various aspects of 

the pole-placement GPC. The proposed design algorithm 

can also consider constraint on input and output, which 

has not been addressed in the previous works. We also 

show that when constraints are consistent, the resulting 

controller is feasible and its stability is guaranteed. We 

also show that the resulting controller is a reference gov-

ernor MPC; i.e., its counterpart controller comprises of 

an inner loop stabilizing controller and an outer reference 

governor (RG) controller [14], [15]. 

The remaining parts of this paper are as follows. In Sec-

tion II we review the pole-placement design of RST con-

trollers. In Section III a new formulation for GPC which 

is comparable to RST controller structure is introduced. 

In Section IV - the main part of the paper - the procedure 

of pole-placement design of GPC is developed. Some of 

its properties such as degrees of freedom for either of 

closed-loop pole-placement and time optimal perfor-

mance and offset-free condition have been highlighted 

and proved. Detailed formulation for design of uncon-

strained linear GPC controller with pre-specified closed-

loop requirements is derived in Section V. In Section VI 

the suggested method will be extended for inequality 

constraints on the plant’s input and output. Looking at 

pole-placement GPC as a reference governor and its var-

iants is discussed in Section VII. In section VIII several 

illustrative examples are used to clarify main results of 

the paper. Finally, in Section IX the work is concluded, 

and future works are addressed in Section X. 

II.POLE-PLACEMENT DESIGN OF RST CONTROLLER 

It is believed that all conventional linear controllers have 

equivalent RST counterparts. The pole-placement allows 

designing an RST controller for stable or unstable sys-

tems, without restriction upon the degrees of the numer-

ator and denominator polynomials of the plant model  and 

RHP zeros [16]. Figure 1 shows the structure of RST con-

troller, where plant is described by 

𝐴(𝑧−1)𝑦(𝑡) = 𝐵(𝑧−1)𝑢(𝑡)  

𝐴(𝑧−1) = 1 + 𝑎1𝑧
−1 + ⋯+ 𝑎𝑛𝐴

𝑧−𝑛𝐴,  

𝐵(𝑧−1) = 𝑏1𝑧
−1 + ⋯+ 𝑏𝑛𝐵

𝑧−𝑛𝐵 , 𝑏𝑖 = 0, 𝑖 =

1,⋯ , 𝑑 (plant delay)  

and the controller polynomials are defined as 

𝑅(𝑧−1) = 𝑟0 + 𝑟1𝑧
−1 + ⋯ + 𝑟𝑛𝑅

𝑧−𝑛𝑅 ,  

𝑆(𝑧−1) = 1 + 𝑠1𝑧
−1 + ⋯+ 𝑠𝑛𝑆

𝑧−𝑛𝑆, (1) 

𝑇(𝑧−1) = 𝑡0 + 𝑡1𝑧
−1 + ⋯+ 𝑡𝑛𝑇

𝑧−𝑛𝑇.  

 

Desired closed-loop characteristic polynomial is in the 

Diophantine equation form 

𝐴̅(𝑧−1) = 𝐴(𝑧−1)𝑆(𝑧−1) + 𝐵(𝑧−1)𝑅(𝑧−1) 

         = 1 + 𝑎̅1𝑧
−1 + ⋯ + 𝑎̅𝑛𝐴̅

         (2) 

This equation can be solved when written in 𝑀𝑥 = 𝑐 

form as 

← −𝑛𝑠−→ ← −𝑛𝑅 + 1−→

[
 
 
 
 
 
 
 

1
𝑎1

⋮
𝑎𝑛𝐴−1

𝑎𝑛𝐴

0
⋮
0

⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋮

0
0
⋮
0
1
𝑎1

⋮
𝑎𝑛𝐴

𝑏1

𝑏2

⋮
𝑏𝑛𝐵−1

𝑏𝑛𝐵

0
⋮
0

⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋮

0
0
⋮
0
𝑏1

𝑏2

⋮
𝑏𝑛𝐵]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑠1

⋮
𝑠𝑛𝑆

𝑟0
𝑟1
⋮

𝑟𝑛𝑅]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑎̅1 − 𝑎1

𝑎̅2 − 𝑎2

⋮
𝑎̅𝑛𝐴

− 𝑎𝑛𝐴

𝑎̅𝑛𝐴+1

⋮
𝑎̅𝑛𝐴̅ ]

 
 
 
 
 
 
 

(3) 

Fig. 1. Block diagram of the standard RST controller. 
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There are unique minimal solutions for 𝑅(𝑧−1) and 

𝑆(𝑧−1) when polynomials 𝐴(𝑧−1) and 𝐵(𝑧−1) are 

coprime and the left hand matrix of (3) is full row rank 

[9], [17]. Thus, the number of independent equations in 

(3) is 𝑞 = 𝑛𝐴 + 𝑛𝐵 − 1, the orders of 𝑅(𝑧−1), and 𝑆(𝑧−1) 

are 𝑛𝑅 = 𝑛𝐴 − 1, 𝑛𝑆 = 𝑛𝐵 − 1, and the order of desired 

𝐴̅(𝑧−1) should be 
𝑛𝐴̅ ≤ 𝑛𝐴 + 𝑛𝐵 − 1. (4) 

Polynomials 𝑅 and 𝑆 can have pre-specified parts – a dif-

ferentiator for example - to impose an integrator, or some 

robustness and/or closed loop performance requirements. 

III.GENERALIZED PREDICTIVE CONTROL, A NEW 

FORMULATION 

GPC is one of the well-developed MPC algorithms 

with good capabilities in control of various types of 

plants, and comparative features with transfer function-

based controllers. The future outputs of system can be es-

timated using the corresponding difference equation 

𝑦(𝑡 + 𝑗) = ∑ 𝑏𝑖𝑢(𝑡 + 𝑗 − 𝑖) − ∑ 𝑎𝑖
𝑛𝐴
𝑖=1 𝑦(𝑡 + 𝑗 − 𝑖)

𝑛𝐵
𝑖=1 . 

As 𝑦(𝑡 + 𝑗 − 𝑖) is not available for 𝑗 − 𝑖 > 0, it is esti-

mated based on past outputs recursively. Proceeding the 

same manipulation, one can arrange final result for 

𝑦̂(𝑡 + 1|𝑡) up to 𝑦̂(𝑡 + 𝑑 + 𝑃|𝑡), (𝑃 is the prediction 

horizon), in the following matrix form 

[

𝑦̂(𝑡 + 1|𝑡)

𝑦̂(𝑡 + 2|𝑡)
⋮

𝑦̂(𝑡 + 𝑑 + 𝑃|𝑡)

] =

[

𝑏1 0 … 0

−𝑎1𝑏1 + 𝑏2

⋮
𝑏1 ⋯
⋮ ⋮

0
⋮

⋯ 𝑏1

] [

𝑢(𝑡)

𝑢(𝑡 + 1)
⋮

𝑢(𝑡 + 𝑃 − 1)

] +

[

𝑏2 𝑏3 ⋯ 𝑏𝑛𝐵

−𝑎1𝑏2 + 𝑏3

⋮
⋯

⋮ ⋮

−𝑎1𝑏𝑛𝐵

⋮
⋯

] [

𝑢(𝑡 − 1)

𝑢(𝑡 − 2)
⋮

𝑢(𝑡 − (𝑛𝐵 − 1))

] +

[

−𝑎1
−𝑎2 … −𝑎𝑛𝐴

𝑎1
2 − 𝑎2

⋮

⋯ ⋯

⋮ ⋮

𝑎1𝑎𝑛𝐴

⋮

⋯

]

[
 
 
 
 

𝑦(𝑡)

𝑦(𝑡 − 1)
⋮
⋮

𝑦(𝑡 − (𝑛𝐴 − 1))]
 
 
 
 

        (5) 

Prediction model is the last P equations of (5), and can be 

described in compact form 

𝑦 = 𝐻𝑝𝑢𝑝 + 𝐻𝑚𝑢𝑚 + 𝐹𝑦𝑚, (6) 

where terms of (6) are as appear in (5) respectively. Ele-

ments of 𝐻𝑚 and 𝐹 can be described by 

𝐻𝑚(𝑖, 𝑗) = 𝑏(𝑖+𝑗) + ∑ (−𝑎𝑙)
𝑖−1
𝑙=1 𝐻𝑚(𝑖 − 𝑙, 𝑗); 𝑖 = 1: 𝑃, 

𝑗 = 1: 𝑛𝐵 − 1 and 𝑎𝑙 , 𝑏𝑙 = 0 for 𝑙 < 1, and 𝑙 > 𝑛𝐴 and 

𝑙 > 𝑛𝐵, (7-a) 

𝐹(𝑖, 𝑗) = −𝑎(𝑖+𝑗−1) + ∑ (−𝑎𝑙)
𝑖−1
𝑙=1 𝐹(𝑖 − 𝑙, 𝑗); 𝑖 = 1: 𝑃, 

 𝑗 = 1: 𝑛𝐴 and 𝑎𝑙 = 0 for 𝑙 < 1 and 𝑙 > 𝑛𝐴. (7-b) 

For linear systems and unconstrained quadratic cost func-

tion (8-a), controller gain matrix 𝐾 is (8-b) [2] 

𝐽 = 𝑄𝑇(𝑦 − 𝑤)2𝑄 + ℛ𝑇𝑢𝑝ℛ (8-a) 

𝐾 = (𝐻𝑝
𝑇𝑄𝐻𝑝 + ℛ)

−1
𝐻𝑝

𝑇𝑄, (8-b) 

where 𝑄 and ℛ are output error and control effort penalty 

weighting matrices, and control input to the plant is 

𝑢(𝑡) = 𝑘(𝑤 − (𝐻𝑚𝑢𝑚 + 𝐹𝑦𝑚)), (9) 

where 𝑘 = [𝑘1, 𝑘2, ⋯ , 𝑘𝑃] is the first row of 𝐾 in (8), 

and 𝑤 is the reference trajectory. When future reference 

trajectory is known, 𝑤 is set to: 𝑤 = [𝑤(𝑡 + 𝑑 +
1), 𝑤(𝑡 + 𝑑 + 2),⋯  , 𝑤(𝑡 + 𝑑 + 𝑃)]𝑇, and control is 

named as Preview MPC, otherwise 𝑤 is set to: 𝑤 =
[𝑤(𝑡), 𝑤(𝑡),⋯  , 𝑤(𝑡)]𝑇, and control is named as Non-

preview MPC. 

IV.BASICS of POLE-PLACEMENT GPC  

Using Sections II and III results, we can compare and 

match counterpart terms in pole-placement and GPC to 

derive GPC gain. Equation (9) can be re-written as 

𝑢(𝑡) + 𝑘𝐻𝑚𝑢𝑚 = 𝑘𝑤 − 𝑘𝐹𝑦𝑚  

Terms of this equation can be transformed to the 𝑧-power 

series form, 

𝑢(𝑡) + 𝑘𝐻𝑚𝑢𝑚 = 𝑢(𝑡) + 𝑘𝐻𝑚 [
𝑢(𝑡 − 1)

⋮
𝑢(𝑡 − (𝑛𝐵 − 1))

] 

                             = [1 𝑘𝐻𝑚] [

1
𝑧−1

⋮
𝑧−(𝑛𝐵−1)

] 𝑢(𝑡), (10-a) 

𝑘𝑤 = 𝑘 [
𝑤(𝑡 + 𝑑 + 1)

⋮
𝑤(𝑡 + 𝑑 + 𝑃)

] = 𝑘 [
𝑧𝑑+1

⋮
𝑧𝑑+𝑃

]𝑤(𝑡), (10-b) 

𝑘𝐹𝑦𝑚 = 𝑘𝐹 [
1
⋮

𝑧−(𝑛𝐴−1)
] 𝑦(𝑡). (10-c) 

In standard pole-placement RST controller, control input 

is given by 

𝑆(𝑧−1)𝑢(𝑡) = 𝑇(𝑧−1)𝑤(𝑡) − 𝑅(𝑧−1)𝑦(𝑡), (11) 

where 𝑅, 𝑆, and 𝑇 were defined in (1). 

When the future reference trajectory is known or can be 

estimated, polynomial 𝑇 can be in ascending power of 𝑧 

up to prediction horizon 𝑃 

𝑇(𝑧) = 𝑡1𝑧
𝑑+1 + ⋯ + 𝑡𝑛𝑇

𝑧𝑑+𝑛𝑇, 𝑛𝑇 = 𝑃 (12) 

then, terms of (11) and (12) can be represented similar to 

(10) 

𝑅(𝑧−1)𝑦(𝑡) =  [𝑟0 ⋯ 𝑟𝑛𝑅] [
1
⋮

𝑧−𝑛𝑅

] 𝑦(𝑡), (13-a) 

𝑆(𝑧−1)𝑢(𝑡) = [1 ⋯ 𝑠𝑛𝑆] [
1
⋮

𝑧−𝑛𝑆

] 𝑢(𝑡), (13-b) 

𝑇(𝑧)𝑤(𝑡) = [𝑡1 ⋯ 𝑡𝑛𝑇] [
𝑧𝑑+1

⋮
𝑧𝑑+𝑛𝑇

]𝑤(𝑡). (13-c) 

The corresponding pole-placement and GPC terms are 
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for 𝑅:    𝑘𝐹 [
1
⋮

𝑧−(𝑛𝐴−1)
] = [𝑟0 … 𝑟𝑛𝑅

] [
1
⋮

𝑧−𝑛𝑅

], (14-a) 

for S: [1   𝑘𝐻𝑚] [

1
𝑧−1

⋮
𝑧−(𝑛𝐵−1)

] = [1… 𝑠𝑛𝑆
] [

1
𝑧−1

⋮
𝑧−𝑛𝑆

], (14-b) 

for 𝑇:   𝑘 [
𝑧𝑑+1

⋮
𝑧𝑑+𝑃

] = [𝑡1 … 𝑡𝑛𝑇
] [

𝑧𝑑+1

⋮
𝑧𝑑+𝑛𝑇

], 𝑛𝑇 = 𝑃. (14-c) 

Equations (14-a,b) can be arranged in 𝑀𝑥 = 𝑐 form to 

calculate GPC gain 𝑘. 

[
𝐻𝑚(𝑛𝐵−1)×𝑃

𝑇

 𝐹𝑛𝐴×𝑃
𝑇

] [
𝑘1

⋮
𝑘𝑃

] =

[
 
 
 
 
 
 

𝑠1

⋮
𝑠𝑛𝑆
− −
𝑟0
⋮

𝑟𝑛𝑅 ]
 
 
 
 
 
 𝑛𝑆 = 𝑛𝐵 − 1

𝑛𝑅 = 𝑛𝐴 − 1
𝑛𝑇 = 𝑃

𝑡𝑗 = 𝑘𝑖,𝑗 , 𝑗 = 1: 𝑃

𝑖 = 1: 𝑃

 (15) 

For the desired RST controller to have a GPC counter-

part, (15) should have at least one solution. There exists 

a solution for 𝑘 when [𝐻𝑚|𝐹]𝑇  is full row rank; i.e., row 

rank of [𝐻𝑚|𝐹]𝑇 be equal to 𝑛𝐴 + (𝑛𝐵 − 1), and 𝑃 ≥
𝑛𝐴 + (𝑛𝐵 − 1). But as will be shown in Theorem 1, the 

row rank of [𝐻𝑚|𝐹]𝑇  is equal to max (𝑛𝐴, 𝑛𝐵 − 1). 

Therefore, an RST controllers has a GPC counterpart 

when the order of desired closed loop characteristic pol-

ynomial be 𝑛𝐴̅ ≤ max (𝑛𝐴, 𝑛𝐵 − 1) and is not the same 

as (4) for general pole placement. 

Theorem 1: For co-prime 𝐴 and 𝐵 polynomials, the row 

rank of augmented matrix  [𝐻𝑚|𝐹]𝑇  is max (𝑛𝐴, 𝑛𝐵 − 1). 

Proof: Equations (7) explicitly shows that the first terms 

𝑏(𝑖+𝑗) = 0 for 𝑖 > 𝑛𝐵 − 1, and 𝑎(𝑖+𝑗−1) = 0 for 𝑖 > 𝑛𝐴 

respectively, and following rows are linear combination 

of previous rows. Thus we can conclude that 

column rank of [
𝐻𝑚

𝑇
(𝑛𝐵−1)×𝑃
− − −
𝐹𝑇

𝑛𝐴×𝑃

] = max(𝑛𝐴, 𝑛𝐵 − 1)

𝑓𝑜𝑟 𝑃 ≥ max(𝑛𝐴, 𝑛𝐵 − 1)

  (16) 

The result of Theorem 1 puts some restrictions on 𝑅 and 

𝑆. However, requirements such as integral control can 

easily be considered in predefined parts of 𝑅(𝑧−1) and 

𝑆(𝑧−1). ■ 

Theorem 2: Every pole-placement controller has a corre-

sponding GPC counterpart when its closed-loop charac-

teristic equation 𝐴̅(𝑧−1) be 

𝑛𝐴̅ ≤ max (𝑛𝐴, 𝑛𝐵 − 1) (17) 

Proof: Replacing unknowns vector of (2) with (15) 

[
 
 
 
 
 
 
 

1
𝑎1

⋮
𝑎𝑛𝐴−1

𝑎𝑛𝐴

0
⋮
0

⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋮

0
0
⋮
0
1
𝑎1

⋮
𝑎𝑛𝐴

𝑏1

𝑏2

⋮
𝑏𝑛𝐵−1

𝑏𝑛𝐵

0
⋮
0

⋮
⋮
⋱
⋮
⋮
⋮
⋮
⋮

0
0
⋮
0
𝑏1

𝑏2

⋮
𝑏𝑛𝐵]

 
 
 
 
 
 
 

[
𝐻𝑚(𝑛𝐵−1)×𝑃

𝑇

 𝐹𝑛𝐴×𝑃
𝑇

] [
𝑘1

⋮
𝑘𝑃

] =

[
 
 
 
 
 
 
 

𝑎̅1 − 𝑎1

𝑎̅2 − 𝑎2

⋮
𝑎̅𝑛𝐴

− 𝑎𝑛𝐴

𝑎̅𝑛𝐴+1

⋮
𝑎̅𝑛𝐴̅ ]

 
 
 
 
 
 
 

 (18) 

The first term of (18) is a full rank square 𝑛𝐴 + 𝑛𝐵 − 1 

matrix, and second one is (𝑛𝐴 + 𝑛𝐵 − 1) × 𝑃 rectangular 

matrix, and its column rank is max (𝑛𝐴, 𝑛𝐵 − 1). There-

fore their product will be an (𝑛𝐴 + 𝑛𝐵 − 1) × 𝑃 rectan-

gular matrix, and its rank is equal to  max (𝑛𝐴, 𝑛𝐵 − 1). 

This means that degrees of freedom of desired closed 

loop characteristic polynomial 𝐴̅(𝑧−1) is max (𝑛𝐴, 𝑛𝐵 −
1). 

However, is this restriction on the pole places, or number 

of poles? Surprisingly, as will be shown, the product of 

the first two matrices of (18) is a simple matrix, and its 

rows after max (𝑛𝐴, 𝑛𝐵 − 1) are identically zero, i.e., or-

der of 𝐴̅(𝑧−1) is max (𝑛𝐴, 𝑛𝐵 − 1). Two first terms in 

(18) can be expanded as: 

𝑀 [
𝐻𝑚

𝑇

−
𝐹𝑇

] = [𝑀1(𝑛𝐴+𝑛𝐵−1)×(𝑛
𝐵
−1)|𝑀2(𝑛𝐴+𝑛𝐵−1)×(𝑛

𝐴
)]

[
𝐻𝑚(𝑛𝐵−1)×𝑃

𝑇

 𝐹𝑛𝐴×𝑃
𝑇

] = 𝑀1(𝑛𝐴+𝑛𝐵−1)×(𝑛
𝐵
−1)𝐻𝑚(𝑛𝐵−1)×𝑃

𝑇

+𝑀2(𝑛𝐴+𝑛𝐵−1)×(𝑛
𝐴
)𝐹𝑛𝐴×𝑃

𝑇

 

Replacing terms of final expanded form by (3) and (5) 

and focusing on last ((𝑛𝐴 + 𝑛𝐵 − 1) − max (𝑛𝐴, 𝑛𝐵 −

1)) rows, named X, gives 

𝑋 = 

[

𝑎max(𝑛𝐴,𝑛𝐵−1)

0 ⋱ 𝑎𝑛𝐴−1

0 … 𝑎𝑛𝐴

] [

𝑏2 −𝑎1𝑏2 + 𝑏3

⋮ ⋮
𝑏𝑛𝐵−1

𝑏𝑛𝐵

−𝑎1𝑏𝑛𝐵−1 + 𝑏𝑛𝐵

−𝑎1𝑏𝑛𝐵

…
……
…

]

+ [

𝑏max (𝑛𝐴,𝑛𝐵−1)

0 ⋱ 𝑏𝑛𝐵−1

0 … 𝑏𝑛𝐵

] [

−𝑎1 𝑎1
2 − 𝑎2

⋮ ⋮
−𝑎𝑛𝐴−1

−𝑎𝑛𝐴

⋯
𝑎1𝑎𝑛𝐴

…
……
…

] ,

𝑎𝑖 = 0, 𝑖 > 𝑛𝐴, and 𝑏𝑗 = 0, 𝑖 > 𝑛𝐵   

Reduced 𝑀1 and 𝑀2 matrices are upper triangular, and 

calculation shows that the first column of 𝑋 equals zero 

 [
 D

O
I:

 1
0.

52
54

7/
jo

ce
e.

1.
1.

1 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ce
e.

kn
tu

.a
c.

ir
 o

n 
20

25
-0

7-
03

 ]
 

                               4 / 9

http://dx.doi.org/10.52547/jocee.1.1.1
https://jocee.kntu.ac.ir/article-1-25-en.html


  Journal of Control (English Edition), VOL. 01, NO. 01, July. 2022 

5 

 

𝑋(: ,1)

= [

⋮
𝑎𝑛𝐴

𝑏𝑛𝐵−1 + 𝑎𝑛𝐴−1𝑏𝑛𝐵
− 𝑏𝑛𝐵

𝑎𝑛𝐴−1 − 𝑏𝑛𝐵−1𝑎𝑛𝐴

𝑎𝑛𝐴
𝑏𝑛𝐵

− 𝑏𝑛𝐵
𝑎𝑛𝐴

]

= [
⋮
0
0
] 

Equation (7-a, b) shows that the proceeding columns of 

𝐻𝑚
𝑇  and 𝐹𝑇 are the same linear combinations of the pre-

vious columns plus the first column shifted upward. 

Thus, all rows after max (𝑛𝐴, 𝑛𝐵 − 1) of multiplier ma-

trix in (18) are equal to zero. ■ 

A. Offset free control 

When the plant is Type 1, or a differentiator is added 

as a predefined part of 𝑆(𝑧−1), we expect an offset free 

control, i.e., the DC-gain of 𝑅(𝑧−1) and 𝑇(𝑧) should be 

equal; 

∑ 𝑘𝑖
𝑃
𝑖=1 = 𝑅(𝑧−1)|𝑧=1, 𝑜𝑟 ∑ 𝑘𝑖

𝑃
𝑖=1 = ∑ 𝑟𝑖

𝑛𝑅
𝑖=1 . (19) 

Theorem 3: When there is an integrator in forward route, 

DC gain of 𝑅(𝑧−1) and 𝑇(𝑧) (∑ 𝑘𝑖
𝑃
𝑖=1 ) are equal, and the 

derived control is offset free. 

Proof: When the plant transfer function is Type 1 or 

greater, the steady state gain of the system is infinity; i.e. 

𝐴(𝑧−1)|𝑧=1 = 1 + 𝑎1 + ⋯+ 𝑎𝑛𝐴
= 0, or 

𝑎1 + ⋯+ 𝑎𝑛𝐴
= −1.                                                 (20)  

Relation between elements of polynomial 𝑅 and 𝑘 can be 

highlighted from upper set equations in (15); 

(𝐹𝑇)𝑛𝐴×𝑃 [
𝑘1

⋮
𝑘𝑃

] = [

𝑟0
⋮

𝑟𝑛𝑅

], 𝑛𝑅 = 𝑛𝐴 − 1,  

and (19) is true when sum of elements of each column of 

𝐹𝑇 be equal to 1. Replacing for  𝐹𝑇(𝑖, 𝑗)’s from (7-b) and 

renumbering row index for corresponding 𝐹(𝑖, 𝑗)’s, one 

obtains 

∑ 𝐹𝑇(𝑗, 𝑖)
𝑛𝐴
𝑗=1 = ∑ 𝐹(𝑖, 𝑗)

𝑛𝐴
𝑗=1 = ∑ (−𝑎(𝑖+𝑗−1) −

𝑛𝐴
𝑗=1

∑ 𝑎(𝑖−𝑙)
𝑖−1
𝑙=1 𝐹(𝑖 − 𝑙, 𝑗)).  

For 𝑖 = 1, from (7-b) 

∑ 𝐹𝑇(𝑗, 1)𝑛𝐴
𝑗=1 = ∑ 𝐹(1, 𝑗)

𝑛𝐴
𝑗=1 = ∑ −𝑎𝑗

𝑛𝐴
𝑗=1 = 1,  

and for 𝑖 ≥ 2, for succeeding rows we can conclude con-

secutively using (20) 

∑ 𝐹𝑇(𝑗, 𝑖)
𝑛𝐴
𝑗=1 = ∑ 𝐹(𝑖, 𝑗)

𝑛𝐴
𝑗=1 = (−𝑎𝑖 − ⋯− 𝑎𝑛𝐴

) +

∑ −𝑎(𝑖−𝑙)
𝑖−1
𝑙=1 ∑ 𝐹(𝑖 − 𝑙, 𝑗)

𝑛𝐴
𝑗=1 = (−𝑎𝑖 − ⋯− 𝑎𝑛𝐴

) +

(−𝑎1 − ⋯− 𝑎𝑖−1) = 1. ■ 

V.DESIGN of UNCONSTRAINED POLE-PLACEMENT GPC 

In conventional unconstrained GPC design, gain matrix 

(8), is used to calculate the controller gain. In Section IV 

we derived some equality constraint on gain vector 𝑘 to 

satisfy the desired closed-loop characteristic. In this sec-

tion we show that GPC optimization problem can be 

modified to be directly solved for 𝐾 matrix with some 

equality constraints on its first row. Cost function (8-a) 

for basic GPC can be written as 

𝐽 = (𝑤 − (𝐻𝑝𝑢𝑝 + 𝑓))
𝑇
𝑄(𝑤 − (𝐻𝑝𝑢𝑝 + 𝑓)) + 𝑢𝑝

𝑇ℛ𝑢𝑝, 

𝑓 = 𝐻𝑚𝑢𝑚 + 𝐹𝑦𝑚. (21) 

Unconstrained optimization on input vector 𝑢𝑝 leads to a 

gain matrix 𝐾. There are two approaches to consider con-

straints (15); the first is to consider it for the first row of 

the GPC gain matrix (8), and second approach is to con-

sider it for all rows of 𝐾. In practice the first row deter-

mines the GPC gain so we consider constraints on first 

row. Control at time 𝑡 is given by (9), or 𝑢(𝑡) =
(𝑤 − 𝑓)𝑇[𝑘1 𝑘2  ⋯ 𝑘𝑃]𝑇. Thus 𝑢𝑝 can be written as 

𝑢𝑝 = [

𝑢(𝑡)
𝑢(𝑡 + 1)

⋮
𝑢(𝑡 + 𝑃 − 1)

] =

[
(𝑤 − 𝑓)𝑇 01×(𝑃−1)

0(𝑃−1)×𝑃 𝐼(𝑃−1)
] 

[
 
 
 
 
 

𝑘1

⋮
𝑘𝑃

𝑢(𝑡 + 1)
⋮

𝑢(𝑡 + 𝑃 − 1)]
 
 
 
 
 

=

𝑊𝐹𝑃×(2𝑃−1)𝑢̅𝑃 (2𝑃−1)×1. (22) 

Rewriting cost function (21) in standard quadratic form 

𝐽 = 𝑢𝑝
𝑇(𝐻𝑝

𝑇𝑄𝐻𝑝 + ℛ)𝑢𝑝 − 𝑢𝑝
𝑇𝐻𝑝

𝑇𝑄(𝑤 − 𝑓) − (𝑤 −

𝑓)𝑇𝑄𝐻𝑃𝑢𝑝 + (𝑤 − 𝑓)𝑇𝑄(𝑤 − 𝑓)  

and replacing for 𝑢𝑝 from (22) gives the cost function 𝐽 

as a standard quadratic function of 𝑢̅𝑝  

𝐽 = 𝑢̅𝑝
𝑇𝑊𝐹𝑇(𝐻𝑝

𝑇𝑄𝐻𝑝 + ℛ)𝑊𝐹𝑢̅𝑝 − 𝑢̅𝑝
𝑇𝑊𝐹𝑇𝐻𝑝

𝑇𝑄𝑇(𝑤 −

𝑓) − (𝑤 − 𝑓)𝑇𝑄𝐻𝑝𝑊𝐹𝑢̅𝑝 + (𝑤 − 𝑓)𝑇𝑄(𝑤 − 𝑓). (23) 

When (23) be solved subject to constraints (22) on 𝑘, the 

derived GPC controller will have desired closed-loop 

poles. At every time step 𝑡, optimal command 𝑢(𝑡) is cal-

culated indirectly using calculated 𝑘 part of 𝑢̅𝑝. 

This algorithm also can be used for designing GPC with-

out pre-specified closed loop characteristics when solved 

without equality constraints (22). For positive definite 𝑄 

and ℛ, (23) is a convex optimization problem. Although 

the 𝑊𝐹 in (22) is varying with time but because con-

straints (22) are satisfied through optimization, close loop 

characteristic of the controller is time invariant. Effect of 

time variance of the controller gain and other important 

features of the proposed algorithm and the previous sec-

tions results are discussed below. 

A. Discussion 1 

1. A pole placement designed RST controller has a GPC 

counterpart if the order of its closed loop characteristic 

polynomial meet (17), i.e., 𝑛𝐴̅ ≤ max (𝑛𝐴, 𝑛𝐵 − 1). 

2. Regarding proposed pole-placement GPC design algo-

rithm, the number of optimization variable (𝑘𝑖’s)  put in 

place of 𝑢(𝑡), are equal to 𝑃. Pole placement require-

ments puts max (𝑛𝐴, 𝑛𝐵 − 1) equality constrains on op-

timization variables and there remain 𝑃 − max (𝑛𝐴, 𝑛𝐵 −
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1) degrees of freedom to be used for time optimality, but 

it is only for preview control. 

3. According to (15), counterpart 𝑅(𝑧−1) and 𝑆(𝑧−1) pol-

ynomials are fixed and do not change by changing MPC 

design parameters 𝑃, 𝑄, and ℛ. 

4. Control horizon (𝑀 , 𝑀 ≤ 𝑃) also does not change 

closed loop characteristic. Changing 𝑀 do not changes 

anything for non-preview control, but it changes tracking 

characteristic of the control for preview control when 

𝑃 > max (𝑛𝐴, 𝑛𝐵 − 1). 

5. Preview vs. Non-preview pole-placement GPC: As 

clarified in previous discussions, GPC design parameters 

can only alter 𝑇(z). But according to (19), 𝑇(z) is also 

fixed for non-preview control. But in preview control, 

GPC design parameters forms 𝑇(𝑧), so tracking behavior 

of the control. This enables multi-objective optimization 

of control for both time domain and frequency domain 

requirements. 

6. Is the outcome controller linear or non-linear? Also, is 

it time variant or invariant? Equations (9)-(14) explicitly 

show that the outcome controller is equivalent to the form 

of (11), where 𝑅(𝑧−1) and 𝑆(𝑧−1) are set to desired pole-

placement controller terms. Nevertheless, 𝑇(𝑧) may vary 

with time for pre-view controller and for constrained con-

trol, which will be discussed in Section VI. However, 

GPC is a finite time optimal control, and is time-variant 

as any other finite time optimal control. However, 𝑇(𝑧) 

is the time varying term and do not alter closed loop char-

acteristic. 

7. Stability of the control: For unconstrained pole place-

ment GPC, (23) always has at least one finite solution. 

For preview control, although the controller may be time 

variant, but control is bounded input-bounded output sta-

ble. This can be proved easily by expanding the control 

as sum of bounded terms of 𝑇(𝑧) (i.e., 𝑘𝑖𝑧
𝑖) of the stable 

closed loop system 

𝑦(𝑡) =  
𝑇(𝑧)𝐵(𝑧)

𝐴(𝑧)𝑆(𝑧)+𝐵(𝑧)𝑅(𝑧)
𝑟(𝑡), 𝑇(𝑧) = 𝑘1𝑧

1 + ⋯+ 𝑘𝑝𝑧
𝑝,  

so existence of finite 𝑘𝑖
′𝑠, as there are for consistent con-

straints, is sufficient for stability of the closed loop con-

trol system. 

8. Comparison with others’ works 

Some other researchers, e.g., [18] have used (8-b) instead 

of (22) which leads to complicated results to solve for 

GPC error and control effort weighting. Also they have 

not clearly discussed important issues such as degrees of 

freedom and limitations on desired closed loop character-

istics, and time optimality consideration along with de-

sired closed loop features. 

 Works of Maciejowski [19], Cairano and Bemporad in 

[1] followed by Hartley and Maciejowski in [11] are 

based on development of state observer-based of (23) to 

find all MPC design parameters. But they also have not 

addressed the above-mentioned important issues. Our so-

lution in frequency domain, based on transfer function 

description, is also more amenable for studying GPC re-

lated problems. 

VI.DESIGN of CONSTRAINED POLE-PLACEMENT GPC 

The most favorable feature of model predictive con-

trollers is their ability to handle constraints on input, 

states and output. GPC formulation derived above can 

also consider these constraints. Constraints on input 𝑢𝑝 

can be transformed to constraints on new defined variable 

𝑢̅𝑝, 

[
 
 
 

𝑢𝑝 min(𝑡)

𝑢𝑝 min(𝑡 + 1)

⋮
𝑢𝑝 min(𝑡 + 𝑃)]

 
 
 

≤

[
 
 
 

𝑢𝑝(𝑡)

𝑢𝑝(𝑡 + 1)

⋮
𝑢𝑝(𝑡 + 𝑃)]

 
 
 

≤

[
 
 
 

𝑢𝑝 max(𝑡)

𝑢𝑝 max(𝑡 + 1)

⋮
𝑢𝑝 max(𝑡 + 𝑃)]

 
 
 

. (24-

a) 

Replacing 𝑢𝑝 using (22), results in constraints on 𝑢̅𝑝 

[
 
 
 

𝑢𝑝 min(𝑡)

𝑢𝑝 min(𝑡 + 1)

⋮
𝑢𝑝 min(𝑡 + 𝑃)]

 
 
 

≤

[
(𝑤 − 𝑓)𝑇 01×(𝑃−1)

0(𝑃−1)×𝑃 𝐼(𝑃−1)
]

[
 
 
 
 
 

𝑘1

⋮
𝑘𝑃

𝑢(𝑡 + 1)
⋮

𝑢(𝑡 + 𝑃 − 1)]
 
 
 
 
 

≤

[
 
 
 

𝑢𝑝 max(𝑡)

𝑢𝑝 max(𝑡 + 1)

⋮
𝑢𝑝 max(𝑡 + 𝑃)]

 
 
 

. (24-b) 

Based on (24-b), control input constraints can be trans-

ferred to inequality constraint in the form of 𝐴𝑥 < 𝑏. 

Constrained GPC controller with pre-specified closed-

loop characteristic can be derived by minimizing cost 

function (23) subject to pre-specified closed-loop re-

quirements (21) and input constraints specified by (24-

b). 

Constraints on output 𝑦, can also be transformed to con-

straints on input 𝑢𝑝, and afterward on new defined 𝑢̅𝑝 us-

ing prediction model (9). 

For equality and inequality constrains 𝑦 = 𝑦0 𝑎𝑛𝑑 𝑦 ≤

𝑦 ≤ 𝑦, we have 

𝐻𝑝𝑢𝑝 + 𝑓 = 𝑦0  ⇒ 𝐻𝑝𝑢𝑝 = 𝑦0 − 𝑓, (24-c) 

𝑦 ≤ 𝐻𝑝𝑢𝑝 + 𝑓 ≤ 𝑦  ⇒ [
𝐻𝑝

−𝐻𝑝
] 𝑢𝑝 ≤ [

𝑦 − 𝑓
−𝑦 + 𝑓], (24-d) 

which can be considered in (24-a) and (24-b) as well. 

However, existence of a feasible solution set to the opti-

mization problem should be checked. 

B. Stability of the constrained pole-placement GPC 

Stability of the constrained pole-placement GPC also 

can be shown similar to unconstrained control. When 

constraints are consistent, optimization problem (23) has 

bounded solution, and control is BIBO stable. 
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VII.REFERENCE GOVERNOR GPC 

Reference governor (RG) is an add-on control schemes 

to stable control loops, which will be activated when 

changing reference input is going to deteriorate con-

straints. With the proposed designing algorithm, one can 

freeze 𝑆(𝑧−1) and 𝑅(𝑧−1) of a linear unconstraint GPC - 

a pole-placement GPC - and let 𝑇(𝑧) to act as a dynamic 

RG. Thus RG functionality is an intrinsic capability of 

pole-placement GPC. 

VIII. ILLUSTRATIVE EXAMPLES 

Findings of the paper are illustrated in some illustrative 

examples. 

Example 1: Order of closed loop characteristic polyno-

mial 

Example 1 shows basic results of sections II-IV. Con-

sider below plant transfer function, for which 𝑛𝐴 = 2 and 

𝑛𝐵 = 2, 

𝐺(𝑧−1) =
𝑦(𝑧−1)

𝑢(𝑧−1)
=

0.2𝑧−1+0.3𝑧−2

1−1.8𝑧−1+0.8𝑧−2.  

To design an RST controller using (2) and find a unique 

minimal solution, one should consider (4) 

𝑛𝑅 = 𝑛𝐴 − 1 = 1   ⇒   𝑅 = 𝑟0 + 𝑟1𝑧
−1,  

𝑛𝑆 = 𝑛𝐵 − 1 = 1   ⇒   𝑆 = 1 + 𝑠1𝑧
−1,  

𝑛𝐴̅ ≤ 𝑛𝐴 + 𝑛𝐵 − 1 = 3,  

and to have the counterpart GPC controller one should 

consider (17) 

𝑛𝐴̅ ≤ max (𝑛𝐴, 𝑛𝐵 − 1) = 2.  

We select a second order characteristic equation as fol-

lows 

𝐴̅(𝑧−1) = 1 − 1.2𝑧−1 + 0.52𝑧−2.  

Polynomials 𝑅 and 𝑆 can be determined using (2) 

[
1 0.2 0

−1.8 0.3 0.2
0.8 0 0.3

] [
𝑠1
𝑟0
𝑟1

] = [
−1.2 + 1.8
0.52 − 0.8

0
].  

The resulting polynomials are 

𝑆 = 1 + 0.3078𝑧−1, 𝑅 = 1.4609 − 0.8209𝑧−1.  

GPC prediction horizon should be selected using (16; i.e., 

𝑃 ≥ 2. For 𝑃 = 4, (15) will be 

[
0.3 0.54 0.732 0.8856
1.8 2.44 2.952 3.3616

−0.8 −1.44 −1.952 −2.3616
] [

𝑘1

𝑘2

𝑘3

𝑘4

] =

[
0.3078
1.4609

−0.8209
] (25) 

Ranks of both coefficients and its augmented matrices in 

(25) are equal to 2 and satisfy (16). For 𝑃 = 2 it has 

unique solution: [𝑘1  𝑘2] = [0.1577  0.4824]. Plant is 

Type 1 and for offset free control (19), 𝑅(𝑧−1)𝑧=1 =
𝑘1 + 𝑘2 = 0.64 should be satisfied. For 𝑃 > 2, we have 

𝑃 − 2 degrees of freedom for 𝑘𝑖’s, which can be a solu-

tion of the optimization problem in the corresponding 

GPC subject to equality constraints (18). 

If one consider (4) instead of (17) to design RST control-

ler,  the resulting controller has not a counterpart GPC. 

For example, for 𝑛𝐴̅ ≤ 𝑛𝐴 + (𝑛𝐵 − 1) = 3 and 𝐴̅(𝑧−1) =
(1 − 1.2𝑧−1 + 0.52𝑧−2)(1 − 0.9𝑧−1), polynomials 𝑅 

and 𝑆 can be found using (3) as 

[
1 0.2 0

−1.8 0.3 0.2
0.8 0 0.3

] [
𝑠1
𝑟0
𝑟1

] = [
−2.1 + 1.8
1.6 − 0.8
−0.468

].  

Solving this equation results in 

𝑅 = 0.5374 − 0.4734𝑧−1, 𝑆 = 1 − 0.4075𝑧−1.  

For 𝑃 = 4, according to (33), 𝑘 should be a solution of 

[
−0.8 −1.44 −1.952 −2.3616
1.8 2.44 2.952 3.3616
0.3 0.54 0.732 0.8856

] [

𝑘1

𝑘2

𝑘3

𝑘4

] =

[
−0.4734
0.5374

−0.4075
].  

Since ranks of coefficients matrix is 2, and rank of its 

augmented matrix is 3, then there is not any solution for 

𝑘. 

Example 2: Minimum prediction horizon 

Example 2 illustrates design of pole-placement GPC for 

minimum prediction horizon. When controller is de-

signed subject to the desired closed-loop poles consid-

ered in (20), the controller gain matrix can be calculated 

using (32)-(33). Step response, optimum 𝑘𝑖’s, and closed 

loop characteristic polynomial coefficients for desired 

characteristic polynomial 𝐴̅(𝑧−1) = 1 − 1.2𝑧−1 +
0.52𝑧−2, 𝑃 = 𝑀 = max (𝑛𝐴, 𝑛𝐵 − 1) = 2, 𝑄 = ℛ = 𝐼 

are shown in Fig. 2 for unconstrained preview, and in 

Fig.3 for non-preview control. As can be seen there is no 

extra degree of freedom for 𝑘𝑖’s, and results for both are 

the same, and ∑𝑘𝑖
′𝑠 = 0.64, the same as in Example 1. 

Example 3: Effect of greater prediction horizon 

Figure 4 shows output results for prediction horizon 𝑃 =
4 > 𝑃min, and for 𝑄 = 𝐼 and ℛ= 𝐼. Although they vary 

with time due to remaining two degrees of freedom for 

𝑘𝑖s, but closed loop characteristic is as desired. 

Example 4: Effect of GPC design parameters on preview 

control 

Figure 5 shows simulation results of Example 3 by de-

creasing control effort weighting to  ℛ = 0.01𝐼. As we 

expect, it has faster tracking behavior with bigger control, 

while reserving regulating behavior (closed loop charac-

teristic unchanged). Both Figures show that although 𝑘𝑖-

s may vary during steady state, but controls do not 

change, and variations are due to degrees of freedom of 

𝑘𝑖-s. 

Example 5: Constrained pole-placement GPC 

Figures 6 shows input constrained control of preview 

control of the plant for ℛ= 0.01𝐼 , shown in Fig. 4, 

which has meet control constraint while preserving 

closed loop characteristic. But for Non-preview there is 
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no feasible solution when constraint is activated. Figure 

7 shows outcomes of the algorithm for a 200 times itera-

tion, which is not converged, and unacceptable solution. 

IX.CONCLUSION 

In this paper we introduced a new formulation for GPC 

to be comparable to RST controller. By comparing two 

formulation peer to peer, we derived a new formulation 

for designing GPC with pre-specified closed-loop prop-

erties. The derivations explicitly show some important 

properties of the GPC; some has not been clarified be-

fore. The developed method can also be used for input 

and output constrained control with guaranteed close 

loop stability; which has not addressed before. New de-

rived properties of GPC and capabilities of the proposed 

design method are examined through some examples. 

The approach is also attractive for theoretical studies; it 

unifies some other extension and reduces them to basic 

MPC context such as controller matching which is not a 

new problem, and can be solved as an ordinary MPC. We 

showed also that a GPC can intrinsically be a reference 

governor controller, with guaranteed closed loop stabil-

ity; a seamless solution to the problem rather than add-on 

schemes. 

X.FUTURE WORKS 

As in similar works, to have more flexibility, and op-

timize closed loop characteristics along with time re-

sponse behavior, loosing equality constraints will be con-

sidered in future works. Extending the proposed method 

to MIMO systems is also an interesting subject. 

Our main motivation to this development has been pre-

paring required analysis methods and design tools for 

model reference MPC for data driven MPC, an emerging 

field in control engineering. So, we will demonstrate 

some new application of outcomes in our ongoing works. 
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Figure 2: Pole-placement GPC, unconstrained, preview con-

trol, P=2, R=1. 

Figure 3: Pole-placement GPC, unconstrained non-preview 

control, P = 2, ℛ = 1. 

 
Figure 4: Pole-placement GPC, unconstrained preview con-

trol, P=4, R=1 

Figure 5: Pole-placement GPC, unconstrained preview con-

trol, P=4, R=0.01. 

Figure 6: Pole-placement GPC, constrained preview control, 

P = 4, ℛ = 0.01. 

Figure 7: Pole-placement GPC, constrained, non-preview 

control, P=4, R=0.01. (Not converged) 

Note: In all figures, the upper one is for Reference, Control and Output, the middle shows calculated controller gain vector and, 

and sum of the gain elements, and the bottom shows closed loop characteristic equation’s coefficients. 
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