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Abstract—For synchronization with the grid and
controlling the injected active and reactive currents of the
LCL-filter based grid-tied inverters, capacitor voltages can
be sampled. An LCL filter attenuates the switching
harmonics effectively but needs an extra sensor for the LCL
filter resonance damping. Popular methods use capacitor
currents for the LCL filter resonance damping.
Theoretically, the derivative of capacitor voltage, which is
proportional to the capacitor current, damps the resonance,
and the extra sensor is avoided. However, traditional
discretization methods for digital implementation of the
derivative operator are not valid when the resonance
frequency is high. Indeed, they don’t preserve the phase and
magnitude of the ’s’ function in the resonance frequency
region. This paper introduces an effective method for
discretizing the ’s’ function in the desired frequency range.
The capacitor voltages of the LCL filter are sampled and
the proposed function makes their derivative. The output of
the derivative function with a tuned gain is added to the
controller’s output for damping the LCL filter resonance.
The simulation results show the effectiveness of the
proposed method.

Keywords: LCL filter, Grid-tied inverter, resonance
damping, discretization method.

. INTRODUCTION

G rid-tied inverters as the interface between the grid and
renewable-energy systems have received increasing
attention recently. To inject current with low Total
Harmonic Distortions (THD) and meet the grid
standards, an L or LCL filter is usually integrated
between the inverter and power grids. The LCL filter
attenuates the switching harmonics more effectively, but

introduces two poles on the imaginary axis whose
frequency is called the LCL filter resonance and makes
the closed-loop system unstable [1]-[6].

The LCL resonance damping methods are mainly divided
into passive damping (PD) and Active Damping (AD).
PD adds a resistor in parallel or series with elements of
the LCL filter, which increases losses and thus decreases
the total efficiency. Therefore, this approach is unsuitable
for high current applications. AD uses the PD resistor
effect in the closed-loop system by manipulating the
Mason graph of the system and needs an extra sensor.
AD can be achieved by measuring different state
variables of the LCL filter. It can be based on the
inverter-side currents [7], [8], the capacitor currents [9],
[10], the capacitor voltages [11]-[14], and the grid-side
currents [6], [15]. Theoretically, it is possible to reduce
the proportional gain of the closed-loop regulators to
stabilize the system. However, this technique has serious
disadvantages such as low controller bandwidth and poor
disturbance rejection.

Modern control approaches such as Sliding Mode
Control (SMC), Deadbeat Predictive Control (DPC), and
state feedback control have been proposed in [6]-[20].
Basically, using these controllers does not eliminate the
need for extra sensors for resonance damping. In [21], an
adaptive sliding mode controller is designed to regulate
the grid-side currents. The resonance frequency of the
implemented LCL filter is above one-sixth (critical
frequency) of the sampling frequency. It is proved in [22]
that LCL filters whose resonance frequency is above the
critical frequency do not need AD. However, setting the
LCL resonance frequency above the critical frequency
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does not allow using all abilities of the LCL filter in
attenuation of switching harmonics.

Considering the inverter-side currents as the control
targets provides stability against the LCL filter resonance
[23]. But, this approach does not have enough precision
in the control of both the power factor and the waveform
of the injected current into the grid [18], [24]. In [25],
the proposed control algorithm has six loops for
regulating the inverter-side current, the grid-side
currents, and the capacitor voltages. Also, four estimators
for reducing sensors are used. Even though the control
approach fulfills the requirements, it needs a complex
tuning procedure.

AD with adding a resistor effect in the control loop is a
partial state feedback, which moves the unstable poles of
the LCL filter inside the stability region. The closed-loop
poles are assigned in arbitrary locations by the full state
feedback and generate the desired dynamic response.
However, this method needs as many sensors as the
system states [26]. Some attempts have been made to
reduce additional sensors by using observers [27], [28].
However, the estimation adds computational cost to the
control system.

For synchronization with the grid and injecting current
with controlled phase and amplitude, the grid voltages or
LCL capacitor voltages are sampled. Adding the
derivative of the capacitor voltages to the controller’s
output with a tuned gain damps the LCL resonance. Thus,
the need for the capacitor current sensors for AD can be
removed. This is more interesting in high current
applications where the current sensors are expensive. The
problem comes from discretizing the derivative function
(’s’) when the resonance frequency is high. A
discretization method has to preserve the magnitude and
the phase of the ideal ’s’ function at the LCL resonance
frequency. Traditional methods such as forward Euler,
backward Euler, or Tustin do not fulfill the requirements
[34]. The backward Euler does not preserve the phase of
the ideal ’s’ function. The forward Euler always adds
unstable poles to the system and it is not recommended.
The Tustin method amplifies noise, and this method is
not valid at the LCL resonance frequency.

Different approaches are suggested for the digital
implementation of the ’s” function [11]-[13], [29]. In
[11], a high pass filter makes the derivative of the
capacitor voltages. The high pass filter is tuned to
preserve features of the ’s” function at the resonance
frequency. A high pass filter mimics the ’s’ function
below a specific cutoff frequency. For higher
frequencies, it generates phase error in the response.

In [29], capacitor voltages are passed through a low pass
filter and the outputs are used for AD. In the steady-state
condition, a low pass filter is an integrator whose output
is delayed by 90°. The negative of this filter is advanced
by 90° and mimics the derivative function. However, this
method is not valid during the transient state, and

therefore this method is not a true derivative. In [12] and
[13], a lead-lag filter makes the derivative of capacitor
voltages. This filter is valid in a narrow frequency range,
and has a complex tuning procedure. This problem is
more significant when the inverter is connected to a weak
grid where the resonance frequency changes frequently
[33].

It is worth noting that every techniques for the
discretization of the ’s” function must not amplify noise
at high frequencies.

This paper introduces a method for constructing a
discrete function that preserves the ’s’ function in a desire
frequency range. The phase and magnitude of the
proposed function and the ideal ’s’ function are matched
in the selected frequency range which includes the
resonance frequency.

The rest of the paper is organized as follows. In section
11, the dynamic model of the process is derived in the
stationary frame. In this section, a brief discussion about
the LCL filter resonance is given. In section 111, the linear
system identification method for construction of a
discrete function that mimics the ‘s’ function is
explained. A comprative study is given to show the
superiority of the proposed function over the other
methods. In section 1V, the AD gain based on the root
loci analysis is tuned. To verify the effectiveness of the
proposed function, simulation results are given in V.
Finally, the conclusion is given in VI.

I1. SYSTEM MODELING

Fig.1 shows a 3-phase grid-tied inverter. To inject
current with low THD, an LCL filter is integrated
between the inverter and the grid. Table | shows the
parameters under study. The dynamic system equation
according to Fig.1 in the stationary reference frame is:

-0

Vabe = Tilape + b dl;tbc + Vape @)
g

Vhe = Tuile + 1o 2+ vl @

v‘cltbc = Vape + Telape 3

icllbc = icczbc + igbc ) (4)

i and g superscripts denote the inverter-side and the grid-
side variables. v}, is the voltage drop across the
capacitor filter and its parasitic resistance. In the worst
case, where the parasitic resistances are neglected, and
the resonance is strong, the transfer function between one
phase of the grid current and the inverter voltage is
expressed as follows:

i9 1 y?
Gc = —=—— 5
undamped i lis 52"““12"65 ( )
where:
I+l 1
Wypg = = —,
res lilze ’ Izc
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Fig. 1. Configuration of a 3-phase grid-tied inverter.
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As (5) shows, there are two poles on the imaginary axis
that can make the closed-loop system unstable. Fig. 2
shows control schemes when the grid-side currents are
the control targets. In this figure, two strategies for AD
are shown. In the first strategy, the capacitor current with
a tuned gain (G4p) is added to the controller’s output
(Veontror)- This modification in the control loop damps
the LCL filter resonance. To show this, (5) can be written

as:
[ i9 1 1

v eani® TaaZ . " (6)
v Veontrol—GADU 1115¢5 S%+Wfeg

By using i¢ = csv°in (2) and setting 7; and v, to zero,

the relation between i€ and i9 is obtained:

1. .
vl =v ==i,si9
cs

Considering the second term and the third term in the
above equation results in:

i€ =cl,s?i9, @)
A cross-multiplying of the second and third terms of (6)
and using i€ from (7) results in:

ig(lllzcs(sz + wzes)) = Vcontrol — GADClzszig-
Finally, the transfer function relating i9 and v¢yntr0; IS:

i9 1 1
Gc = = 8
damped Veontrol  l1l2€s S2HKgs+wEes ( )
where
G
Kd = _AD.
5%

G Caampea Nas astandard form of the well-known second-
order transfer function. In this transfer function, K is the
damping ratio. Comparing (5) and (8) shows that adding
the capacitor current to the controller’s output shifts the
unstable poles toward the left-hand side of the s-plane.

TABLE |
PARAMETERS UNDER THE STUDY
Symbol quantity Value
l Inverter-side filter 3mH
a inductance
L, Grid-side inductance 1.2mH
c Filter Capacitor 10 pF
Vae DC bus voltage 650V
v Grid voltage 380V rms
fow Switching frequency 10 kHz
fres Resonance frequency 1.7 kHz
f Grid frequency 50 Hz

11
W LLCss?+ak,

V, N 3
‘conrro( ¥ X i & e i9,
TN ~ +\ [T+ 11
24 30l mverter|{ of £ 14 »-L ~ i
] \ T \/ ks &, s s
i‘]/ /\ \ |

AD\

D—

Fig. 2: Grid-side current control with two possibilities for AD.

Fig. 3 shows the Bode diagrams of Gcyngampea and
GCaampea- The former shows an infinite gain around the
resonance frequency while a sharp crossing of —180
degrees occurs in the phase diagram. This means
instability in the closed-loop system [30]. This infinite
gain doesn’t exist in the Bode diagram of Gcgampeq-

To synchronize with the grid and inject currents with a
controlled phase and amplitude, the capacitor voltages
can be sampled. In the continuous space, the derivative
of the capacitor voltage is proportional to the capacitor
current and can be used for AD. However, traditional
discretization methods are not valid around the resonance
frequency. In the next section, a systematic procedure for
constructing a discrete function that preserves the ‘s’
function in a desire frequency range is explained. The
transfer function is in the ‘z” domain and is valid at the
resonance frequency.

II1.LINEAR SYSTEM IDENTIFICATION

A. Extraction of a discrete derivative transfer function
for digital implementation

Methods in the system identification theory try to
construct a dynamic model based on the measured data.
An identification needs three steps: data collection,

100
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Fig. 3. Bode diagrams of G ¢ 4mpeq (red curve) and
GCyndampea (bIUe curve).
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model selection, and model validation [31]. In one view,
linear identification methods can be classified into time-
domain and frequency-domain methods. In this research,
a time-domain method for constructing the derivative
function is developed. The most important time-domain
models are Autoregressive with Exogenous Input (ARX),
Autoregressive Moving Average with Exogenous Input
(ARMAX), Output Error (OE), and Box-Jenkins (BJ)
[V]. Selection of a model usually starts with the simplest
available ones. Therefore, ARX is the first approach for
modeling the derivative function. The structure of 1-
input, 1-output ARX is:

Az Dy=B@z YHu+e 9)

with A and B the polynomials, u and y the input and
output of the model and e the white noise with zero
average. A and B polynomials have the following forms:

Az YV =14+az7 '+ +a,,z " (10)
B(z™Y) = bzt + -+ 4 bz .

To obtain the ARX parameters, the system (the ’s’
function) must be persistently excited.

Variations in the grid inductance result in deviations in
the LCL filter resonance frequency. The derivative
function should be valid in a reasonable frequency range
that covers resonance frequency changes. The frequency
range between 1.3 kHz and 1.7 kHz is selected for
constructing the desired function. A mixture of sinusoidal
signals that cover this frequency range is used for the
excitation signal. It is possible to extend the valid
frequency range, but the order of the transfer function
increases, also. Fig. 4 shows the excitation scheme which
is done in MATLAB Simulink. The ‘s’ function is fed
with a chirp signal. The data of the chirp signal and the
‘s’ function output is recorded for the identification. The
sampling frequency is 10 kHz. The goal is to find the
model output § that best approximates the sampled
output y by optimizing the ARX parameters (the A and
B polynomials). (9) can be rewritten in the following
form:

y=¢08" +te (11)

with 87 the ARX parameters, 9 the estimated output and
@, the regressors:
9 = [al, ey ana, bo, ey bnb]

@ =[—yt—1), ..., =yt —ng),u (t — 1), ..., uq (t — np)].

A7 is obtained by minimizing the sum squared errors
between y and y:

J@) = XV, (y(®©) - 9(©)° = I, (v(©) —,67)°  (12)

with N the number of the sampled data. By setting the
derivative of J with respect to 67 to zero, the ARX
parameters are obtained:

U ES BN I ES Y B E70) (13)

More detail is explained in [31].

Selection of ARX polynomial orders (ng, n,) is a
challenging procedure, which in most cases is based on
trial and error. To determine the lowest orders for the best
fit, different values of n, and n;, were examined. The best
fit with sufficient accuracy is achieved with n, = 2 and

n, = 2 which is 99 %. The obtained transfer function is:
b
1.739x10%22-1.786x10%z
= — —. (14)
z2+8.682x10"12+0.044x10~5

B. Validation of the derivative transfer function
and a comparative study

Table Il shows the backward-Euler, forward-Euler, and
Tustin methods for discretization. The Bode diagrams of
these three functions and the ’s’ function for the
frequencies between 1.3 kHz and 1.7 kHz are shown in
Fig. 5.

The Bode diagram shows that the phase and magnitude
of forward and backward Euler derivatives diverge from
the s’ function, which are not acceptable. The Bode
diagram of Tustin is matched with the ’s’ function. But
this method amplifies the sampling noise. For more
investigation, the time domain responses of the Tustin
function and the ’s’ function are shown in Fig . 6. The
frequency of the input signal is f = 1.4 kHz. As can be
seen, the obtained waveforms by Tustin and the
continuous ‘s’ function are not matched, and the Tustin
method is not acceptable for this application.

Also, the time domain responses of the backward Euler
function and the ’s’ function are shown in Fig. 7. The
frequency of the input signal is 1.4 kHz. The phase error
between the ‘s’ function and backward Euler function is
observed.

The Bode diagrams of the D function and the s’ function

u(k)

d
/Wm T =2y

Fig. 4. Excitation signal.

Y

TABLE Il
DIRECT DISCRETIZATION METHODS
Method Transfer function
Tusti 2z—1
ustin T,z+1
z—1
Forward-Euler
T,
z—1
Backward-Euler
zTy
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Fig. 5. Bode diagrams of Tustin, backward-Euler, and
forward-Euler derivatives.
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Fig. 6. The outputs of the ’s” function and the Tustin function,
the frequency of the input signal is 1.4 kHz .

are shown in Fig. 8. The D function shows 90" phase at
the resonance frequency which is in agreement with the
‘s’ function. The output waveforms of the D and ‘s’
functions are demonstrated in Fig. 9. The frequency of
the input signal is f=1.5 kHz. The obtained results show
a good match between the magnitude and the phase of D
and ’s’ functions.

Furthermore, the D function is valid with less than a 0.5°
error in the phase in the frequency range of [1.3 1.7] kHz.
The D function makes the capacitor voltage derivative,
and the capacitor current information around the
resonance frequency is preserved.

For more investigation, the Bode diagram of a lead-lag
filter, which is presented in [12], is shown in Fig. 10. The
transfer function of the lead-lag filter is:

H = g g (teme) (15)

Kfs+wmax

with k, the following coefficient:

1 — sin @y

1+ sin @y

and with w,,,,, the frequency for the maximum phase
(which is set at the resonance frequency), @.,qx the

maximum phase at w,q., kg the damping factor.
Following the procedure, which is explained in [12], the
filter is designed for an LCL filter whose resonance
frequency is 1.5 kHz. The phase error of this filter at
resonance frequency is about 13°.

IV.AD AND Pl CONTROLLER DESIGN

To tune the coefficients of the Proportional-Integrator
(PI) controller for tracking the grid-side current, the LCL
filter below the resonance frequency is approximated
with an

4
x10
1

¥ Backward Euler |

-05

-1
0.035 0.0355 0.036 0.0365 0.037 0.0375 0.038
Time (s}

Fig. 7. The outputs of the backward Euler and ’s’ functions,
the input signal frequency is 1.5 kHz.
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Fig. 10. Bode diagrams of the lead-lag network and the ‘s’
function.

inductance. The value of this inductance is the sum of the
grid-side and the inverter-side inductances. With this
simplification, coefficients of the PI controller can be
tuned with the symmetrical optimum design [32]:

11+1
Kp =0 (16)
T; = 9T,

K
Ki = T_I;

with K,, the proportional gain, K; the integral gain, and T;
the integrator time constant.

The AD gain (G,p) is tuned by the root-locus method.
First, the closed-loop transfer function is derived. Then,
the dominator of the transfer function whose zeros
determine the closed-loop poles is modified such that
G,p appears as a multiplying factor. The open-loop
transfer function according to Fig. 2 is:

G =PI X G2 niror - 17)
P i9 . . -
Gyl omerol = vl— is the transfer function relating the
control

P1 controller output (veoneror) @nd the grid-side current.
This function can be written in two terms:

ig _ [ve ig
Gvcontrol - Gcontrol X Gvc . (18)

. g
Where G,¢ = —, and G%s
c

— ig:
control — . Gvc is the

Vcontrol

transfer function relating the capacitor voltage and the
grid-side current:

GY =2 (19)

le.

Using (18) in (17) results in:
G =PIx Gggntrol X Gll;g (20)

G25neror 1S the transfer function relating the capacitor

voltage and v,y This function is obtained by
considering the relationship between the capacitor

voltage and the inverter voltage which is:
ve __ V_C — 1
Gif = = (22)
(21) is obtained from (1)-(5). According to the control
scheme presented in Fig. 2, v' is v' = veoneror —
GapcDve. Using the equivalent expression of vt in (21)
yields:
v¢ 1

G:J;lc = = 1141y (22)

V! =Vcontroi—GapcDVE 11CS+T

A cross-multiplying between the first term and second
term of (22) results in:
Glljlc( VUcontrol — GADCDvC) =v°

and finally GZ5ir01 1S:

¢ 6o

Vcontrol - 1+G11;iCGADCD (23)

All the transfer functions in (20) have been determined

and the closed-loop transfer function can be obtained as:
G

"= @

By setting (1 + G) to zero (the characteristic equation

of T), the closed-loop poles are obtained:

1+GYEGapcD+PI GIEGLd

v

ve —
Gcontrol -

146G = - =0 (25)
1+G,;Gapc D

which results in:

14 GXGyupc D + PI GG = 0. (26)

(26) is modified such that G4, appears as a multiplying
factor:
GapGyicD
14PI1 GZEGLE
Fig. 11 shows the loci of the closed-loop poles as G, is
varied. The value of G, which provides the highest
stability is 23 Q.
For more investigation, the step response of the T transfer
function with the tuned coefficients of the PI controller
and the AD gain is given in Fig. 12. The settling time is
2 ms, and the overshoot is negligible. This figure shows
that there is no oscillation in the response, and the LCL
resonance is damped.
The robustness of the closed-loop system against the
model mismatches is measured by the phase margin. The
phase margin is the distance to the -180° phase value in
the Bode diagram at the cut-off frequency. The Gain
Margin (GM) and Phase Margin (PM) of the open-loop
transfer function (G in (17)) are obtained by MATLAB
and are 7.54 dB and 57.5° which fulfil the requirements
of a stable system (Fig. 13).
Fig. 14 demonstrates the Bode diagram of the damped
system with the proposed AD. Also, the undamped
system is shown. The former shows no infinite gain,

= 0. 27)
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which confirms the stability of the closed-loop system.
Table I11 shows PM and GM for three different values of
grid-side inductances. This table shows that the system

has enough robustness
variations.
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Fig. 13. GM and PM with AD based on the capacitor voltage
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Fig. 14. The Bode diagrams of damped system with the
proposed derivative method and undmaped system, G,p = 23.

TABLE Il

A SUMMARY OF PM AND GM FOR DIFFERENT VALUES OF THE GRID
INDUCTANCE (THE D FUNCTION MAKES DERIVATIVE OF THE
CAPACITOR VOLTAGE FOR AD).

Value of inductance (1,)

3mH (f,.s = 1.3 kHz)
2.5mH (f,.s = 1.37 kHz)
1.2mH (f,.s = 1.7 kHz)

GM PM
(dB) (degree)
7.45 59
7.23 58
6.87 57.5

V.SIMULATION RESULTS

The entire system, incl
controller,

is simulated

uding the inverter, SVM, and the
in MATLAB/Simulink for

performance validation. The simulation parameter values
are listed in Table I. The capacitor’s voltages are sampled
every 10 kHz for synchronization and AD purposes. The
AD gain is tuned by the root-locus method (G, = 23.0).
The control block diagram is shown in Fig. 15.

Fig. 16 shows the transient response of the closed-loop

system. The grid-side

currents in the synchronous and

stationary reference frames are shown. In addition, the

inverter-side currents
demonstrated.

in the stationary frame are

pb/ogn

Hulses

AR

Do 166+ 10427 — 1.729+ 10%
"~ 27 + 08231z + 0.007117

differentiated by the D function.

Fig. 15. The Overall control unit.


http://jocee.kntu.ac.ir/article-1-62-en.html

[ Downloaded from jocee.kntu.ac.ir on 2026-02-16 ]

H. Zamani et al.: An Effective Discretization Method of Derivative Operator for the Active Damping Purpose in LCL-Filter Based Grid-Tied Inverters

c

/W%\@ (

. MM/
, %ma(‘ %%%%%%%%ﬂ
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Fig. 16. Grid-side currents in the synchronous and stationary
reference frames and inverter currents, d axis is stepped up: 4
Ato7 Aatt=0.15s, q axis is stepped down: 0 Ato -5 A at t=0.2
S.

In this test, the d-axis reference current is stepped up from
4 Ato7 Aatt=0.15s, and the g-axis reference current
is stepped down from 0 to -5 A att = 0.2 s. The settling
time is less than 3 ms, and there is no overshoot in the
response. No resonance is observed neither in the
transient nor in the steady-state responses of both the g
and d axes, which means the LCL filter resonance is
damped.

By comparing the inverter-side currents and the grid-side
currents, the effectiveness of the LCL filter is observed
as the switching harmonics are eliminated in the grid-side
currents.

The capacitor currents, capacitor voltages, and currents
that are generated by differentiated capacitor voltages
(iDgpc) With the D function are shown in Fig. 17. Some
harmonics in iD,,. are filtered, but it still includes
information which is necessary for the LCL filter

SRR

v;“WWV““W

k SR w \WW& W

Time (s)

(A)

)

Fig. 17. The capacitor currents, capacitor voltages, and currents
that are generated by the D function (iDgp.)

resonance damping.

In the next test, the derivative method changes from the
D function to the backward Euler function. This change
occurs at t=0.08 s. For this transition, the AD gain and PI
controller parameters remain unchanged. Therefore, the
changes in system responses are solely triggered by the
changes in the derivatives.

Fig. 18 shows the results. By applying the backward
Euler derivative, the controller response starts oscillating,
and the system becomes unstable.

The impedance of a weak grid changes frequently. As the
impedance of the grid is in series with [,, uncertainty in
[, reflects the grid impedance variations [13]. In a test,
the grid-side inductance (l,) is stepped up at t =0.1 ms
from 1.2 mH to 3 mH and is backed at t = 0.16 ms. Fig.
19 shows the results. This simulation shows that the
disturbance is rejected successfully in less than 2 ms, and
the system has an acceptable bandwidth. In addition, no
oscillation is observed in the transient response, which

. ,
Backward Euler derivative
20 —
2 =
o5
-20
40
-60 L . L
0.04 0.06 0.08 0.1 0.12 0.14 0.16
40
Backward Euler derivative
20 - >
2 *«W b
. XU ‘
1% % %% !
!
20

40 L L | L
0.04 0.06 0.08 0.1 0.12 0.14 0.16

Time (s)

Fig. 18. Derivation changes between the proposed method and
backward Euler method at t=0.08s.

SN 3@@@@ 30@ )

008 0.1 0.12 0. 14 0‘16 0‘18 0.2
Time (s)

Fig. 19. [, step up: 1.2 mH to 3 mH (t = 0.04s), [, step dwon:
3mH to 1.2mH (t = 0.06ms).
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confirms the effectiveness of the proposed derivative
function.

In the next simulation, the performance of the closed-
loop system is evaluated in terms of a grid voltage dip. A
voltage dip is a disturbance where the RMS value of the
line voltage is reduced by less than 500 ms. A grid
voltage dip of 10 % is applied at t=0.08 s. The controller
has coped with this disturbance in less than 12 ms (Fig.
20), and the currents follow their references accurately.
Again, there are no oscillations in the transient response.

VI. Conclusion

To control the injected active and reactive currents of the
LCL-filter based grid-tied inverters, capacitor voltages
can be sampled for synchronization with the grid.
Theoretically, the derivative of capacitor voltages can be
used to damp the LCL filter resonance, and extra sensors
are avoided. However, when the resonance frequency is
high, discretization methods for digital implementation
of the derivative are not valid. Indeed, the phase and
magnitude of the ’s’ function are not preserved in the
resonance frequency region and AD based on derivative
of the capacitor voltage is not effective. This paper
introduced a method for constructing a discrete function
that preserves the ‘s’ function features in the desire
frequency range. The selected frequency range was [1.3
1.7] kHz which includes the LCL filter resonance
frequency. The orders of numerator and denominator of
the obtained transfer function are 2. The larger frequency
range, the higher order function is needed. The phase
error between the proposed derivative function and the
‘s’ function in the selected frequency range is less than
0.5". The phase error between the forward Euler and the
‘s> function is 30", and between the backward Euler and
the ‘s’ function is -30" which are not acceptable. The
phase of Tustin method is matched but it was shown that

; . ; ! .
—~ ]
= TN ™ A/ AR N\ N TN
S / /— X % / X: 0.07158 / >/ X: 0.09156 7 / X
) YA X /\ |Y:307.9 \ Y2771 /' \ . TN
% /N \/ AN\ N NE N 7z N \
= | N AN o ANt Rt «\¥ ¥ N
500 5 .
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
" . : : .
< L
3z
-10
) s L s s L L
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
ol ; ; — ’
o P .
= D X X DX XX il
el - , 3 N\—/ ’/ \ \,\ d / N~ \ #
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| 1 ./ %5
-10¢ . i . i L
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.1 0.12
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Fig. 20. Performance of the PI controller with the proposed
derivative function for AD under a 3-phase grid voltage dip of
10 %.

this method amplifies noise and is not suitable for this
application.

The AD gain (G,p) was tuned by the root-locus method.
The obtained phase margins for different non-nominal
grid inductances were more than 57°, which implies a
robust closed-loop system. In the end, the results verified
the effectiveness of the proposed method.
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