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Abstract—For synchronization with the grid and 

controlling the injected active and reactive currents of the 

LCL-filter based grid-tied inverters, capacitor voltages can 

be sampled. An LCL filter attenuates the switching 

harmonics effectively but needs an extra sensor for the LCL 

filter resonance damping. Popular methods use capacitor 

currents for the LCL filter resonance damping. 

Theoretically, the derivative of capacitor voltage, which is 

proportional to the capacitor current, damps the resonance, 

and the extra sensor is avoided. However, traditional 

discretization methods for digital implementation of the 

derivative operator are not valid when the resonance 

frequency is high. Indeed, they don't preserve the phase and 

magnitude of the ’s’ function in the resonance frequency 

region. This paper introduces an effective method for 

discretizing the ’s’ function in the desired frequency range. 

The capacitor voltages of the LCL filter are sampled and 

the proposed function makes their derivative. The output of 

the derivative function with a tuned gain is added to the 

controller’s output for damping the LCL filter resonance. 

The simulation results show the effectiveness of the 

proposed method. 

 
Keywords: LCL filter, Grid-tied inverter, resonance 

damping, discretization method. 

 

I.  INTRODUCTION 

rid-tied inverters as the interface between the grid and 

renewable-energy systems have received increasing 

attention recently. To inject current with low Total 

Harmonic Distortions (THD) and meet the grid 

standards, an L or LCL filter is usually integrated 

between the inverter and power grids. The LCL filter 

attenuates the switching harmonics more effectively, but 

introduces two poles on the imaginary axis whose 

frequency is called the LCL filter resonance and makes 

the closed-loop system unstable [1]-[6].  

The LCL resonance damping methods are mainly divided 

into passive damping (PD) and Active Damping (AD). 

PD adds a resistor in parallel or series with elements of 

the LCL filter, which increases losses and thus decreases 

the total efficiency. Therefore, this approach is unsuitable 

for high current applications. AD uses the PD resistor 

effect in the closed-loop system by manipulating the 

Mason graph of the system and needs an extra sensor.  

AD can be achieved by measuring different state 

variables of the LCL filter. It can be based on the 

inverter-side currents [7], [8], the capacitor currents [9], 

[10], the capacitor voltages [11]-[14], and the grid-side 

currents [6], [15]. Theoretically, it is possible to reduce 

the proportional gain of the closed-loop regulators to 

stabilize the system. However, this technique has serious 

disadvantages such as low controller bandwidth and poor 

disturbance rejection.  

Modern control approaches such as Sliding Mode 

Control (SMC), Deadbeat Predictive Control (DPC), and 

state feedback control have been proposed in [6]-[20]. 

Basically, using these controllers does not eliminate the 

need for extra sensors for resonance damping. In [21], an 

adaptive sliding mode controller is designed to regulate 

the grid-side currents. The resonance frequency of the 

implemented LCL filter is above one-sixth (critical 

frequency) of the sampling frequency. It is proved in [22] 

that LCL filters whose resonance frequency is above the 

critical frequency do not need AD. However, setting the 

LCL resonance frequency above the critical frequency 
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does not allow using all abilities of the LCL filter in 

attenuation of switching harmonics.  

Considering the inverter-side currents as the control 

targets provides stability against the LCL filter resonance 

[23]. But, this approach does not have enough precision 

in the control of both the power factor and the waveform 

of the injected current into the grid [18], [24].   In [25], 

the proposed control algorithm has six loops for 

regulating the inverter-side current, the grid-side 

currents, and the capacitor voltages. Also, four estimators 

for reducing sensors are used. Even though the control 

approach fulfills the requirements, it needs a complex 

tuning procedure. 

AD with adding a resistor effect in the control loop is a 

partial state feedback, which moves the unstable poles of 

the LCL filter inside the stability region. The closed-loop 

poles are assigned in arbitrary locations by the full state 

feedback and generate the desired dynamic response. 

However, this method needs as many sensors as the 

system states [26]. Some attempts have been made to 

reduce additional sensors by using observers [27], [28]. 

However, the estimation adds computational cost to the 

control system. 

For synchronization with the grid and injecting current 

with controlled phase and amplitude, the grid voltages or 

LCL capacitor voltages are sampled. Adding the 

derivative of the capacitor voltages to the controller’s 

output with a tuned gain damps the LCL resonance. Thus, 

the need for the capacitor current sensors for AD can be 

removed. This is more interesting in high current 

applications where the current sensors are expensive. The 

problem comes from discretizing the derivative function 

(’s’) when the resonance frequency is high. A 

discretization method has to preserve the magnitude and 

the phase of the ideal ’s’ function at the LCL resonance 

frequency. Traditional methods such as forward Euler, 

backward Euler, or Tustin do not fulfill the requirements 

[34]. The backward Euler does not preserve the phase of 

the ideal ’s’ function. The forward Euler always adds 

unstable poles to the system and it is not recommended. 

The Tustin method amplifies noise, and this method is 

not valid at the LCL resonance frequency. 

Different approaches are suggested for the digital 

implementation of the ’s’ function [11]-[13], [29]. In 

[11], a high pass filter makes the derivative of the 

capacitor voltages. The high pass filter is tuned to 

preserve features of the ’s’ function at the resonance 

frequency. A high pass filter mimics the ’s’ function 

below a specific cutoff frequency. For higher 

frequencies, it generates phase error in the response. 

In [29], capacitor voltages are passed through a low pass 

filter and the outputs are used for AD. In the steady-state 

condition, a low pass filter is an integrator whose output 

is delayed by 90°. The negative of this filter is advanced 

by 90° and mimics the derivative function. However, this 

method is not valid during the transient state, and 

therefore this method is not a true derivative. In [12] and 

[13], a lead-lag filter makes the derivative of capacitor 

voltages. This filter is valid in a narrow frequency range, 

and has a complex tuning procedure. This problem is 

more significant when the inverter is connected to a weak 

grid where the resonance frequency changes frequently 

[33]. 

 It is worth noting that every techniques for the 

discretization of the ’s’ function must not amplify noise 

at high frequencies.  

This paper introduces a method for constructing a 

discrete function that preserves the ’s’ function in a desire 

frequency range. The phase and magnitude of the 

proposed function and the ideal ’s’ function are matched 

in the selected frequency range which includes the 

resonance frequency.  

The rest of the paper is organized as follows. In section 

II, the dynamic model of the process is derived in the 

stationary frame. In this section, a brief discussion about 

the LCL filter resonance is given. In section III, the linear 

system identification method for construction of a 

discrete function that mimics the ‘s’ function is 

explained. A comprative study is given to show the 

superiority of the proposed function over the other 

methods. In section IV, the AD gain based on the root 

loci analysis is tuned. To verify the effectiveness of the 

proposed function, simulation results are given in V. 

Finally, the conclusion is given in VI. 

II. SYSTEM MODELING 

 

Fig.1 shows a 3-phase grid-tied inverter. To inject 

current with low THD, an LCL filter is integrated 

between the inverter and the grid. Table I shows the 

parameters under study. The dynamic system equation 

according to Fig.1 in the stationary reference frame is: 

𝑣𝑎𝑏𝑐
𝑖 = 𝑟𝐿𝑖𝑎𝑏𝑐

𝑖 + 𝑙1
𝑑𝑖𝑎𝑏𝑐

𝑖

𝑑𝑡
+ 𝑣𝑎𝑏𝑐

1                                     (1) 

𝑣𝑎𝑏𝑐
1 = 𝑟𝐿𝑖𝑎𝑏𝑐

𝑔
+ 𝑙2

𝑑𝑖𝑎𝑏𝑐
𝑔

𝑑𝑡
+ 𝑣𝑎𝑏𝑐

𝑔
                                    (2) 

𝑣𝑎𝑏𝑐
1 = 𝑣𝑎𝑏𝑐

𝑐 + 𝑟𝑐𝑖𝑎𝑏𝑐
𝑐                                                     (3) 

𝑖𝑎𝑏𝑐
𝑖 = 𝑖𝑎𝑏𝑐

𝑐 + 𝑖𝑎𝑏𝑐
𝑔

 .                                                      (4) 

 

i and g superscripts denote the inverter-side and the grid-

side variables. 𝑣𝑎𝑏𝑐
1  is the voltage drop across the 

capacitor filter and its parasitic resistance. In the worst 

case, where the parasitic resistances are neglected, and 

the resonance is strong, the transfer function between one 

phase of the grid current and the inverter voltage is 

expressed as follows: 

𝐺𝑐𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑 =
𝑖𝑔

𝑣𝑖 =
1

𝑙1𝑠

𝛾2

𝑠2+𝜔𝑟𝑒𝑠
2                                      (5) 

where:                                                                                                                    

𝜔𝑟𝑒𝑠 = √
𝑙1+𝑙2

𝑙1𝑙2𝑐
 , 𝛾 =

1

√𝑙2𝑐
.                    
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Fig. 1. Configuration of a 3-phase grid-tied inverter. 

 

As (5) shows, there are two poles on the imaginary axis 

that can make the closed-loop system unstable. Fig. 2 

shows control schemes when the grid-side currents are 

the control targets. In this figure, two strategies for AD 

are shown. In the first strategy, the capacitor current with 

a tuned gain (𝐺𝐴𝐷) is added to the controller’s output 

(𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙). This modification in the control loop damps 

the LCL filter resonance. To show this, (5) can be written 

as:  
𝑖𝑔

𝑣𝑖 =
𝑖𝑔

𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝐺𝐴𝐷𝑖𝑐 =
1

𝑙1𝑙2𝑐𝑠

1

𝑠2+𝜔𝑟𝑒𝑠
2   .                            (6) 

By using 𝑖𝑐 = 𝑐𝑠𝑣𝑐in (2) and setting 𝑟𝑙 and 𝑣𝑎𝑏𝑐
𝑔

 to zero, 

the relation between 𝑖𝑐 and 𝑖𝑔 is obtained: 

𝑣1 = 𝑣𝑐 =
1

𝑐𝑠
𝑖𝑐𝑙2𝑠𝑖𝑔                                                                                                           

Considering the second term and the third term in the 

above equation results in:   

𝑖𝑐 = 𝑐𝑙2𝑠2𝑖𝑔.                                                                (7) 

A cross-multiplying of the second and third terms of (6) 

and using 𝑖𝑐 from (7) results in: 

𝑖𝑔(𝑙1𝑙2𝑐𝑠(𝑠2 + 𝜔𝑟𝑒𝑠
2 )) = 𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐺𝐴𝐷𝑐𝑙2𝑠2𝑖𝑔. 

Finally, the transfer function relating 𝑖𝑔 and 𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙  is: 

𝐺𝑐𝑑𝑎𝑚𝑝𝑒𝑑 =
𝑖𝑔

𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙
=

1

𝑙1𝑙2𝑐𝑠

1

𝑠2+𝐾𝑑𝑠+𝜔𝑟𝑒𝑠
2                      (8) 

where 

𝐾𝑑 =
𝐺𝐴𝐷

𝑙1
. 

𝐺𝑐𝑑𝑎𝑚𝑝𝑒𝑑  has a standard form of the well-known second-

order transfer function. In this transfer function, 𝐾𝑑 is the 

damping ratio. Comparing (5) and (8) shows that adding 

the capacitor current to the controller’s output shifts the 

unstable poles toward the left-hand side of the s-plane.   

 

TABLE I 
 PARAMETERS UNDER THE STUDY 

Symbol quantity Value 

𝒍𝟏 
Inverter-side filter 

inductance 
3 mH 

𝒍𝟐  Grid-side inductance 1.2 mH 

𝒄 Filter Capacitor  10 µF 

𝑽𝒅𝒄 DC bus voltage 650V  

𝒗𝒈 Grid voltage 380V rms 

𝒇𝒔𝒘 Switching frequency 10 kHz 

𝒇𝒓𝒆𝒔 Resonance frequency 1.7 kHz 

𝒇 Grid frequency 50 Hz 

 

 

 
Fig. 2: Grid-side current control with two possibilities for AD. 

 

Fig. 3 shows the Bode diagrams of 𝐺𝑐𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑 and 

𝐺𝑐𝑑𝑎𝑚𝑝𝑒𝑑 . The former shows an infinite gain around the 

resonance frequency while a sharp crossing of −180 

degrees occurs in the phase diagram. This means 

instability in the closed-loop system [30]. This infinite 

gain doesn’t exist in the Bode diagram of 𝐺𝑐𝑑𝑎𝑚𝑝𝑒𝑑 . 

To synchronize with the grid and inject currents with a 

controlled phase and amplitude, the capacitor voltages 

can be sampled. In the continuous space, the derivative 

of the capacitor voltage is proportional to the capacitor 

current and can be used for AD. However, traditional 

discretization methods are not valid around the resonance 

frequency. In the next section, a systematic procedure for 

constructing a discrete function that preserves the ‘s’ 

function in a desire frequency range is explained. The 

transfer function is in the ‘z’ domain and is valid at the 

resonance frequency. 

III.LINEAR SYSTEM IDENTIFICATION 

A. Extraction of a discrete derivative transfer function 

for digital implementation 

Methods in the system identification theory try to 

construct a dynamic model based on the measured data. 

An identification needs three steps: data collection,  

 

 
Fig. 3. Bode diagrams of 𝐺𝑐𝑑𝑎𝑚𝑝𝑒𝑑  (red curve) and 

𝐺𝑐𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑  (blue curve). 
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model selection, and model validation [31]. In one view, 

linear identification methods can be classified into time-

domain and frequency-domain methods. In this research, 

a time-domain method for constructing the derivative 

function is developed. The most important time-domain 

models are Autoregressive with Exogenous Input (ARX), 

Autoregressive Moving Average with Exogenous Input 

(ARMAX), Output Error (OE), and Box-Jenkins (BJ) 

[31]. Selection of a model usually starts with the simplest 

available ones. Therefore, ARX is the first approach for 

modeling the derivative function. The structure of 1-

input, 1-output ARX is: 

𝐴(𝑧−1)𝑦 = 𝐵(𝑧−1)𝑢 + 𝑒                                            (9)   

with A and B the polynomials, u and y the input and 

output of the model and e the white noise with zero 

average. A and B polynomials have the following forms:  
 

𝐴(𝑧−1) = 1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑎𝑧−𝑛𝑎                       (10) 

𝐵(𝑧−1) = 𝑏0𝑧−1 + ⋯ + 𝑏𝑛𝑏𝑧−𝑛𝑏 .          

To obtain the ARX parameters, the system (the ’s’ 

function) must be persistently excited.  

Variations in the grid inductance result in deviations in 

the LCL filter resonance frequency. The derivative 

function should be valid in a reasonable frequency range 

that covers resonance frequency changes. The frequency 

range between 1.3 kHz and 1.7 kHz is selected for 

constructing the desired function. A mixture of sinusoidal 

signals that cover this frequency range is used for the 

excitation signal. It is possible to extend the valid 

frequency range, but the order of the transfer function 

increases, also. Fig. 4 shows the excitation scheme which 

is done in MATLAB Simulink. The ‘s’  function is fed 

with a chirp signal. The data of the chirp signal and the 

‘s’ function output is recorded for the identification. The 

sampling frequency is 10 kHz. The goal is to find the 

model output 𝑦̂ that best approximates the sampled 

output 𝑦 by optimizing the ARX parameters (the A and 

B polynomials).  (9) can be rewritten in the following 

form: 

 

𝑦̂ = 𝜑𝑡𝜃𝑇 + 𝑒                                                             (11) 

with 𝜃𝑇 the ARX parameters, 𝑦̂ the estimated output and 

𝜑𝑡 the regressors:  

𝜃 = [𝑎1, … , 𝑎𝑛𝑎 , 𝑏0, … . , 𝑏𝑛𝑏] 

𝜑𝑡 = [−𝑦(𝑡 − 1), … . , −𝑦(𝑡 − 𝑛𝑎), 𝑢1(𝑡 − 1), … , 𝑢1(𝑡 − 𝑛𝑏)]. 

𝜃𝑇 is obtained by minimizing the sum squared errors 

between 𝑦 and 𝑦̂: 

𝐽(𝜃) = ∑ (𝑦(𝑡) − 𝑦̂(𝑡))
2

= ∑ (𝑦(𝑡) − 𝜑
𝑡
𝜃𝑇)

2𝑁
𝑡=1

𝑁
𝑡=1           (12) 

with 𝑁 the number of the sampled data. By setting the 

derivative of J with respect to 𝜃𝑇 to zero, the ARX 

parameters are obtained: 

𝜃𝑇 = [
1

𝑁
∑ 𝜑𝑡

𝑇𝜑𝑡
𝑁
𝑡=1 ]

−1
[

1

𝑁
∑ 𝜑𝑡

𝑇𝑦(𝑡)𝑁
𝑡=1 ]                             (13) 

More detail is explained in [31]. 

Selection of ARX polynomial orders (𝑛𝑎, 𝑛𝑏) is a 

challenging procedure, which in most cases is based on 

trial and error. To determine the lowest orders for the best 

fit, different values of 𝑛𝑎 and 𝑛𝑏 were examined. The best 

fit with sufficient accuracy is achieved with 𝑛𝑎 = 2 and 

𝑛𝑏 = 2 which is 99 %. The obtained transfer function is: 

𝐷 =
1.739×104𝑧2−1.786×104𝑧

𝑧2+8.682×10−1𝑧+0.044×10−5.                                  (14) 

B.      Validation of the derivative transfer function 
and a comparative study 

Table II shows the backward-Euler, forward-Euler, and 

Tustin methods for discretization. The Bode diagrams of 

these three functions and the ’s’ function for the 

frequencies between 1.3 kHz and 1.7 kHz are shown in 

Fig. 5.  

The Bode diagram shows that the phase and magnitude 

of forward and backward Euler derivatives diverge from 

the ’s’ function, which are not acceptable. The Bode 

diagram of Tustin is matched with the ’s’ function. But 

this method amplifies the sampling noise. For more 

investigation, the time domain responses of the Tustin 

function and the ’s’ function are shown in Fig . 6. The 

frequency of the input signal is f = 1.4 kHz. As can be 

seen, the obtained waveforms by Tustin and the 

continuous ‘s’ function are not matched, and the Tustin 

method is not acceptable for this application. 

Also, the time domain responses of the backward Euler 

function and the ’s’ function are shown in Fig. 7. The 

frequency of the input signal is 1.4 kHz. The phase error 

between the ‘s’ function and backward Euler function is 

observed. 

The Bode diagrams of the D function and the ’s’ function  

 

 
Fig. 4. Excitation signal. 

TABLE II 
DIRECT DISCRETIZATION METHODS 

Method Transfer function 

Tustin 
2

𝑇𝑠

𝑧 − 1

𝑧 + 1
 

Forward-Euler 
𝑧 − 1

𝑇𝑠

 

Backward-Euler 
𝑧 − 1

𝑧𝑇𝑠
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Fig. 5. Bode diagrams of Tustin, backward-Euler, and 

forward-Euler derivatives. 

 

 
Fig. 6. The outputs of the ’s’ function and the Tustin function, 

the frequency of the input signal is 1.4 kHz . 

 

are shown in Fig. 8. The D function shows 90° phase at 

the resonance frequency which is in agreement with the 

‘s’ function. The output waveforms of the D and ‘s’ 

functions are demonstrated in Fig. 9. The frequency of 

the input signal is f=1.5 kHz. The obtained results show 

a good match between the magnitude and the phase of D 

and ’s’ functions. 

Furthermore, the D function is valid with less than a 0.5° 

error in the phase in the frequency range of [1.3 1.7] kHz. 

The D function makes the capacitor voltage derivative, 

and the capacitor current information around the 

resonance frequency is preserved. 

For more investigation, the Bode diagram of a lead-lag 

filter, which is presented in [12], is shown in Fig. 10. The 

transfer function of the lead-lag filter is: 

𝐻 = 𝑘𝑑𝐶 𝜔𝑚𝑎𝑥 (
𝑠+𝑘𝑓𝜔𝑚𝑎𝑥

𝑘𝑓𝑠+𝜔𝑚𝑎𝑥
)                                        (15) 

with 𝑘𝑓 the following coefficient: 

𝑘𝑓 = √
1 − sin 𝜑𝑚𝑎𝑥

1 + sin 𝜑𝑚𝑎𝑥

 

and with 𝜔𝑚𝑎𝑥   the frequency for the maximum phase 

(which is set at the resonance frequency), 𝜑𝑚𝑎𝑥  the 

 

maximum phase at 𝜔𝑚𝑎𝑥 , 𝑘𝑑 the damping factor. 

Following the procedure, which is explained in [12], the 

filter is designed for an LCL filter whose resonance 

frequency is 1.5 kHz. The phase error of this filter at 

resonance frequency is about 13°. 

IV.AD AND PI CONTROLLER DESIGN 

To tune the coefficients of the Proportional-Integrator 

(PI) controller for tracking the grid-side current, the LCL 

filter below the resonance frequency is approximated 

with an 

 

 

Fig. 7. The outputs of the backward Euler and ’s’ functions, 

the input signal frequency is 1.5 kHz. 

 
Fig. 8. Bode diagrams of D and ’s’ transfer functions. 

 
Fig. 9. The outputs of the D and ’s’ functions, the input signal 

frequency is 1.5 kHz. 
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Fig. 10. Bode diagrams of the lead-lag network and the ‘s’ 

function.  

 

inductance. The value of this inductance is the sum of the 

grid-side and the inverter-side inductances. With this 

simplification, coefficients of the PI controller can be 

tuned with the symmetrical optimum design [32]:  

 

𝐾𝑝 =
𝑙1+𝑙2

3𝑇𝑠
                                                                   (16) 

𝑇𝑖 = 9𝑇𝑠 

𝐾𝑖 =
𝐾𝑝

𝑇𝑖
                                                                                          

with 𝐾𝑝 the proportional gain, 𝐾𝑖 the integral gain, and 𝑇𝑖  

the integrator time constant. 

The AD gain (𝐺𝐴𝐷) is tuned by the root-locus method. 

First, the closed-loop transfer function is derived. Then, 

the dominator of the transfer function whose zeros 

determine the closed-loop poles is modified such that 

𝐺𝐴𝐷 appears as a multiplying factor. The open-loop 

transfer function according to Fig. 2 is:  

𝐺 = 𝑃𝐼 × 𝐺𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖𝑔

 .                                                   (17) 

𝐺𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖𝑔

=
𝑖𝑔

𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙
  is the transfer function relating the 

PI controller output (𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and the grid-side current. 

This function can be written in two terms: 

 𝐺𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖𝑔

= 𝐺𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑣𝑐 × 𝐺𝑣𝑐

𝑖𝑔
 .                                (18) 

Where 𝐺𝑣𝑐
𝑖𝑔

=
𝑖𝑔

𝑣𝑐
 , and 𝐺𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑣𝑐 =
𝑣𝑐

𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙
.  𝐺𝑣𝑐

𝑖𝑔
 is the 

transfer function relating the capacitor voltage and the 

grid-side current:  

                                                                                              

𝐺𝑣𝑐
𝑖𝑔

=
1

𝑙2𝑠
.                                                     (19) 

Using (18) in (17) results in: 

 

𝐺 = 𝑃𝐼 ×  𝐺𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑣𝑐 × 𝐺𝑣𝑐

𝑖𝑔
.                                          (20) 

𝐺𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑣𝑐  is the transfer function relating the capacitor 

voltage and 𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙. This function is obtained by 

considering the relationship between the capacitor 

voltage and the inverter voltage which is: 

𝐺𝑣𝑖
𝑣𝑐 =

𝑣𝑐

𝑣𝑖 =
1

𝑙1𝑐𝑠+
𝑙1+𝑙2

𝑙2

 .                                                      (21) 

 (21) is obtained from (1)-(5). According to the control 

scheme presented in Fig. 2, 𝑣𝑖  is 𝑣𝑖  =  𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙  −

 𝐺𝐴𝐷𝑐𝐷𝑣𝑐.  Using the equivalent expression of 𝑣𝑖 in (21) 

yields: 

 𝐺𝑣𝑖
𝑣𝑐 =

𝑣𝑐

𝑣𝑖=𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝐺𝐴𝐷𝑐𝐷𝑣𝑐 =
1

𝑙1𝑐𝑠+
𝑙1+𝑙2

𝑙2

                     (22) 

A cross-multiplying between the first term and second 

term of (22) results in: 

𝐺𝑣𝑖
𝑣𝑐( 𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐺𝐴𝐷𝑐𝐷𝑣𝑐) = 𝑣𝑐   

and finally 𝐺𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑣𝑐  is: 

𝐺𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑣𝑐 =

𝑣𝑐

𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙
=

𝐺𝑣𝑖
𝑣𝑐

1+𝐺𝑣𝑖
𝑣𝑐𝐺𝐴𝐷𝑐𝐷

                                (23) 

All the transfer functions in (20) have been determined 

and the closed-loop transfer function can be obtained as: 

𝑇 =
𝐺

1+𝐺
 .                                                                    (24) 

By setting (1 +  𝐺) to zero (the characteristic equation 

of 𝑇), the closed-loop poles are obtained: 

1 + 𝐺 =
1+𝐺𝑣𝑖

𝑣𝑐𝐺𝐴𝐷𝑐𝐷+𝑃𝐼 𝐺𝑣𝑖
𝑣𝑐𝐺𝑣𝑐

𝑖𝑔

1+𝐺𝑣𝑖
𝑣𝑐𝐺𝐴𝐷𝑐 𝐷

= 0                             (25) 

which results in: 

 1 + 𝐺𝑣𝑖
𝑣𝑐𝐺𝐴𝐷𝑐 𝐷 + 𝑃𝐼 𝐺𝑣𝑖

𝑣𝑐𝐺𝑣𝑐
𝑖𝑔

= 0.                            (26) 

(26) is modified such that 𝐺𝐴𝐷 appears as a multiplying 

factor: 

1 +
𝐺𝐴𝐷𝐺𝑣𝑖

𝑣𝑐𝑐𝐷

1+𝑃𝐼 𝐺𝑣𝑖
𝑣𝑐𝐺𝑣𝑐

𝑖𝑔 = 0.                                                    (27) 

Fig. 11 shows the loci of the closed-loop poles as 𝐺𝐴𝐷 is 

varied. The value of 𝐺𝐴𝐷 which provides the highest 

stability is 23 Ω.  

For more investigation, the step response of the T transfer 

function with the tuned coefficients of the PI controller 

and the AD gain is given in Fig. 12. The settling time is 

2 ms, and the overshoot is negligible. This figure shows 

that there is no oscillation in the response, and  the LCL 

resonance is damped. 

The robustness of the closed-loop system against the 

model mismatches is measured by the phase margin. The 

phase margin is the distance to the -180° phase value in 

the Bode diagram at the cut-off frequency. The Gain 

Margin (GM) and Phase Margin (PM) of the open-loop 

transfer function (G in (17)) are obtained by MATLAB 

and are 7.54 dB and 57.5° which fulfil the requirements 

of a stable system (Fig. 13). 

Fig. 14 demonstrates the Bode diagram of the damped 

system with the proposed AD. Also, the undamped 

system is shown. The former shows no infinite gain, 
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which confirms the stability of the closed-loop system. 

Table III shows PM and GM for three different values of 

grid-side inductances. This table shows that the system 

has enough robustness against the grid-side inductance 

variations. 

 
Fig. 11. Closed-loop poles displacement by 𝐺𝐴𝐷 variations. 

 

Fig. 12. Step response of the T transfer function, 𝐺𝐴𝐷 =  23. 

 

Fig. 13. GM and PM with AD based on the capacitor voltage 

differentiated by the D function. 

 

Fig. 14. The Bode diagrams of damped system with the 

proposed derivative method and undmaped system, 𝐺𝐴𝐷 = 23. 

TABLE III 
 A SUMMARY OF PM AND GM FOR DIFFERENT VALUES OF THE GRID 

INDUCTANCE (THE D FUNCTION MAKES DERIVATIVE OF THE 

CAPACITOR VOLTAGE FOR AD).  

Value of inductance (𝒍𝟐)  
 

𝐺𝑀 

 (𝑑𝐵) 

PM  
(degree) 

𝟑 𝒎𝑯 (𝒇𝒓𝒆𝒔 = 𝟏. 𝟑 𝒌𝑯𝒛)  7.45 59 

𝟐. 𝟓 𝒎𝑯 (𝒇𝒓𝒆𝒔 = 𝟏. 𝟑𝟕 𝒌𝑯𝒛) 7.23 58 

𝟏. 𝟐 𝒎𝑯 (𝒇𝒓𝒆𝒔 = 𝟏. 𝟕 𝒌𝑯𝒛)  6.87 57.5 

V. SIMULATION RESULTS 

The entire system, including the inverter, SVM, and the 

controller, is simulated in MATLAB/Simulink for 

performance validation. The simulation parameter values 

are listed in Table I. The capacitor’s voltages are sampled 

every 10 kHz for synchronization and AD purposes. The 

AD gain is tuned by the root-locus method (𝐺𝐴𝐷 = 23.0). 

The control block diagram is shown in Fig. 15. 

Fig. 16 shows the transient response of the closed-loop 

system. The grid-side currents in the synchronous and 

stationary reference frames are shown. In addition, the 

inverter-side currents in the stationary frame are 

demonstrated. 

 

 

Fig. 15. The Overall control unit. 
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Fig. 16. Grid-side currents in the synchronous and stationary 

reference frames and inverter currents, d axis is stepped up: 4 

A to 7 A at t=0.15 s, q axis is stepped down: 0 A to -5 A at t=0.2 

s. 

In this test, the d-axis reference current is stepped up from 

4 A to 7 A at t = 0.15 s, and the q-axis reference current 

is stepped down from 0 to -5 A at t = 0.2 s. The settling 

time is less than 3 ms, and there is no overshoot in the 

response. No resonance is observed neither in the 

transient nor in the steady-state responses of both the q 

and d axes, which means the LCL filter resonance is 

damped. 

By comparing the inverter-side currents and the grid-side 

currents, the effectiveness of the LCL filter is observed 

as the switching harmonics are eliminated in the grid-side 

currents.  

The capacitor currents, capacitor voltages, and currents 

that are generated by differentiated capacitor voltages 

(𝑖𝐷𝑎𝑏𝑐) with the D function are shown in Fig. 17. Some 

harmonics in 𝑖𝐷𝑎𝑏𝑐  are filtered, but it still includes 

information which is necessary for the LCL filter  

 

Fig. 17. The capacitor currents, capacitor voltages, and currents 

that are generated by the D function (𝑖𝐷𝑎𝑏𝑐) 

 

resonance damping. 

In the next test, the derivative method changes from the 

D function to the backward Euler function. This change 

occurs at t=0.08 s. For this transition, the AD gain and PI 

controller parameters remain unchanged. Therefore, the 

changes in system responses are solely triggered by the 

changes in the derivatives. 

Fig. 18 shows the results. By applying the backward 

Euler derivative, the controller response starts oscillating, 

and the system becomes unstable. 

The impedance of a weak grid changes frequently. As the 

impedance of the grid is in series with 𝑙2, uncertainty in 

𝑙2 reflects the grid impedance variations [13]. In a test, 

the grid-side inductance (𝑙2) is stepped up at t =0.1 ms 

from 1.2 mH to 3 mH and is backed at t = 0.16 ms. Fig. 

19 shows the results. This simulation shows that the 

disturbance is rejected successfully in less than 2 ms, and 

the system has an acceptable bandwidth. In addition, no 

oscillation is observed in the transient response, which  

 

Fig. 18. Derivation changes between the proposed method and 

backward Euler method at t=0.08s. 

 

Fig. 19. 𝑙2 step up: 1.2 mH to 3 mH (t = 0.04s), 𝑙2 step dwon: 

3mH to 1.2mH (t = 0.06ms). 
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confirms the effectiveness of the proposed derivative 

function. 

In the next simulation, the performance of the closed-

loop system is evaluated in terms of a grid voltage dip. A 

voltage dip is a disturbance where the RMS value of the 

line voltage is reduced by less than 500 ms. A grid 

voltage dip of    10 % is applied at t=0.08 s. The controller 

has coped with this disturbance in less than 12 ms (Fig.  

20), and the currents follow their references accurately. 

Again, there are no oscillations in the transient response. 

VI. Conclusion 

To control the injected active and reactive currents of the 

LCL-filter based grid-tied inverters, capacitor voltages 

can be sampled for synchronization with the grid. 

Theoretically, the derivative of capacitor voltages can be 

used to damp the LCL filter resonance, and extra sensors 

are avoided. However, when the resonance frequency is 

high, discretization methods for digital implementation 

of the derivative are not valid. Indeed, the phase and 

magnitude of  the ’s’ function are not preserved in the 

resonance frequency region and AD based on derivative 

of the capacitor voltage is not effective. This paper 

introduced a method for constructing a discrete function 

that preserves the ‘s’ function features in the desire 

frequency range. The selected frequency range was [1.3 

1.7] kHz which includes the LCL filter resonance 

frequency. The orders of numerator and denominator of 

the obtained transfer function are 2. The larger frequency 

range, the higher order function is needed. The phase 

error between the proposed derivative function and the 

‘s’ function in the selected frequency range is less than 

0.5°. The phase error between the forward Euler and the 

‘s’ function is 30°, and between the backward Euler and 

the ‘s’ function is -30° which are not acceptable. The 

phase of Tustin method is matched but it was shown that 

 

Fig. 20. Performance of the PI controller with the proposed 

derivative function for AD under a 3-phase grid voltage dip of     

10 %. 

 

this method amplifies noise and is not suitable for this 

application. 

The AD gain (𝐺𝐴𝐷) was tuned by the root-locus method. 

The obtained phase margins for different non-nominal 

grid inductances were more than 57°, which implies a 

robust closed-loop system. In the end, the results verified 

the effectiveness of the proposed method.  
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