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Abstract—This paper investigates the problem of 

exponential stability of switched systems with multiple 

time-varying delays. By using the multiple discontinuous 

Lyapunov function (MDLF) approach and  the mode-

dependent average dwell time (MDADT) switching signal, 

new conditions in the form of linear matrix inequalities 

(LMIs) are proposed, which is the first attempt in this area. 

These conditions guarantee the exponential stability of the 

switched system with stable and unstable subsystems where 

multiple time-varying delays are considered in the states. In 

this method all subsystems cannot be unstable, and switched 

system should compose of at least one stable subsystem. 

Furthermore, two examples are given to illustrate the 

effectiveness of the obtained theoretical results. 

 

Keywords: Stability Analysis, Switched Systems, Multiple 

Time Delay, Multiple Lyapunov Function.  

 

I.INTRODUCTION 

witched systems, as a significant class of hybrid 

systems, have been widely studied in recent years [1-

3]. It is known that many real-world systems can be 

modeled as switched systems, for example, multi-agent 

systems [4], control in networks [5, 6], chemical process 

systems [7], flight control systems [8], and 

communication systems [9]. Mainly in continuous-time 

systems, the stability analysis tools used by Lyapunov 

include the common Lyapunov function method (CLF) 

and the multiple Lyapunov function(MLF)  method [10]. 

Since it is difficult to find a common Lyapunov function 

for all subsystems, it is impossible to permanently ensure 

the stability of a switched system under an arbitrary 

 
 

switching signal. Therefore, a logical solution is to 

consider stability  with constrained switching signals. The 

literature confirms that the MLF approach not only has 

more flexibility but also it is possible to provide less 

conservatism in the analysis of switched systems [11]. 

Recently, the authors in [12], developed the MDLF 

approach for stability analysis with a new switching 

regime. In this work, fast switching applies to unstable 

subsystems, and slow switching applies to stable 

subsystems. 

Research in the field of stability analysis with 

constrained switching have been chiefly motivated by 

state-dependent switching [13], time-dependent 

switching, and a combination of them. However, the 

time-dependent switching strategy has been recognized 

to be more flexible and efficient than state-dependent 

switching in the stability analysis [12]. Time-dependent 

switching signals usually consist of three significant 

groups of switching regimes; dwell time (DT), average 

dwell time (ADT), and MDADT switching signals. In 

[14] using DT, a sufficient condition to ensure the 

asymptotic stability of switched systems with all unstable 

subsystems has been proposed. Stability analysis for 

switched positive linear systems with average dwell time 

switching is revisited and discussed in both continuous-

time and discrete-time contexts in [15]. The MDADT 

approach is more suitable in practice than the DT and 

ADT methods because the switching law allows each 

subsystem to have its own separate ADT [16]. Some 

results on the MDADT approach applied to switched 

systems are presented in [17-20]. Here, each Lyapunov 
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function is piecewise continuous throughout the DT for 

an activated system mode. Researchers have shown that 

the MDLF approach can achieve tighter bounds on ADT 

or MDADT. 

On the other hand, time delays widely exist in many 

practical systems, such as aircraft, chemical or process 

control systems, and communication networks, either in 

the state, the control input, or the measurements [15]. 

Hence, the study of time-delay systems has been of great 

interest in many branches of science and engineering 

applications. For instance, in [21], a new delay-

dependent robust stability condition for a type of 

uncertain linear system is proposed using the augmented 

Lyapunov–Krasovskii functional and Jensen’s 

inequality. Moreover, it is worth to mention that the 

multiple time-varying delay attract considerable research 

interest in recent years (see [22-25] and references 

therein). In [26], the delay-dependent stability condition 

of Lurie control systems with multiple time delays is 

obtained by applying the technique of analyzing 

inequality and the method of decomposing the matrices. 

Switched time delay systems have strong engineering 

contextual in power systems and multi-rate control 

systems [27, 28]. So, we make a try to introduced 

multiple time-varying delays to switched systems. It is 

exciting and challenging to investigate the stability 

problem of switched time-delay systems. In [29], the 

authors have presented the model reference tracking 

control problem for a class of switched nonlinear systems 

with multiple time-varying delays. From the studies 

conducted, we can mention [30-33] in singular systems, 

which provides the stability analysis of a class of singular 

switched delayed systems with arbitrary switching 

signals. 

In [34], the authors obtained stability and stabilization 

conditions for switched time delay systems, but the 

intended delays for the time delay system are not 

multiple, which somehow limits the application. This 

paper extends the time delays considered in [34] to 

multiple time-varying delays for switched system 

stability, which removes the previous limitation. 

In this paper, we focus on the problem of stability 

analysis of a continuous-time switched system, including 

stable and unstable subsystems and multiple time-

varying delays in the states. Using the MDLF approach 

and the MDADT switching, a set of sufficient conditions 

is proposed to guarantee the exponential stability of the 

switched system. Compared with the relevant literature, 

the main contribution of this paper is as follows: (i) The 

stability issue of switched systems with multiple time-

varying delays is studied by employing the MDLF 

approach, which is the first attempt in this area; (ii) New 

sufficient criteria are derived, ensuring the stability of 

switched systems with multiple time-varying delays. 

This offers a tighter dwell time-bound with less 

conservativeness. (iii) Typically, in the literature, 

subsystems are only considered stable, which is a 

restriction. However, in this paper, subsystems can be 

both stable and unstable. The rest of this paper is 

organized as follows. Some necessary concepts of 

switched delay systems are reviewed in Section 2. In 

Section 3, exponential stability conditions for switched 

systems with multiple time-varying delays are 

established. Two examples show the effectiveness of the 

obtained results in Section 4, and we conclude this paper 

in Section 5. 

II.SYSTEM DESCRIPTION AND PRELIMINARIES 

Consider a class of switched systems with multiple 

time-varying delays as the following equation: 

𝑥̇(𝑡) = 𝐴0(𝛽)𝑥(𝑡) +∑𝐴𝑗(𝛽)𝑥 (𝑡 − 𝑑𝑗(𝑡))

𝑚

𝑗=1

,             (1) 

𝑥(𝑡) = 𝜙(𝑡) , 𝑡 ∈ [−𝑑, 0], 
where 𝑥(𝑡) ∈ ℝ𝑛, denotes the state, and 

{(𝐴0(𝛽), … , 𝐴𝑚(𝛽)): 𝛽 ∈ 𝒮} is a set of matrices, which 

take its values by an index set 𝒮 = {1,2, … , 𝑁}, in which 

𝑁 > 1 represents the number of subsystems. In here, 

𝒮 = 𝒢⋃𝒰, where 𝒢 and 𝒰 signify the sets composed of 

stable and unstable subsystems respectively, and 

𝛽(𝑡): [0,∞) → 𝒮 denotes a switching signal which is a 

piecewise constant function of time 𝑡 that might depend 

on 𝑡 or 𝑥(𝑡). From now on, for simplicity, at a specified 

time 𝑡, the 𝛽(𝑡), denoted by 𝛽. 𝑑𝑗(𝑡), 1 ≤ 𝑗 ≤ 𝑚, 

represents the time-varying delays satisfying (A1) as 

stated below: 

(A1) 0 ≤ 𝑑𝑗(𝑡) ≤ 𝑑𝑗 , 𝑑̇𝑗(𝑡) ≤ 𝜎𝑗 ≤ 1,  

let 𝑑 = max
1≤𝑗≤𝑚

{𝑑𝑗(𝑡)}. Furthermore, 𝜙(𝑡) is an initial 

vector valued continuous function on [−𝑑, 0] for a 

known constant 𝑑 > 0. It should be emphasized from the 

theory of delay differential equations [35] that the 

existence of the solutions of a non-switched linear delay 

system is guaranteed by a continuous and piecewise 

differentiable initial condition. Consider the following 

non-switched delay system: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐴𝑑𝑥(𝑡 − 𝑑), 
𝑥(𝜃) = 𝜙(𝜃) , 𝜃 ∈ [−𝑑, 0]. 

When 𝜙(0) is continuous, then there exists a unique 

solution 𝑥(𝜙) defined on [−𝑑,∞) that coincides with 𝜙 

on [−𝑑, 0]. By the Lagrange’s formula, this solution is 

given by 

𝑥(𝑡) =  𝑒𝑥𝑝 𝐴𝑡𝑥(0) + ∫ 𝑒𝑥𝑝 𝐴(𝑡−𝜃)𝐴𝑑𝑥(𝜃 − 𝑑)𝑑𝜃
𝑡

0

 

         = 𝑒𝑥𝑝 𝐴𝑡𝑥(0) + ∫ 𝑒𝑥𝑝 𝐴(𝑡−𝜃−𝑑)𝐴𝑑𝑥(𝜃)𝑑𝜃
𝑡−𝑑

−𝑑
. 

This is carried over to linear switched-delay systems 

since the state does not experience any jump at the 

switching instants, based on [27]. 

In accordance with the switching signal 𝛽, we have the 

switching sequence 
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{(𝛽0, 𝑡0), (𝛽1, 𝑡1), (𝛽2, 𝑡2),⋯ , (𝛽𝑘, 𝑡𝑘),⋯ , |𝛽𝑘 ∈ 𝒮, 𝑘 =
0,1,2,⋯ } with 𝑡0 = 0, which means that the 𝛽𝑘-th 

subsystem is activated when 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1).  
Now, considering above systems, the following 

definitions and lemmas are made through the paper: 

Definition 1 [11]: Switched system (1) is said to be 

exponentially stable under the switching signal 𝛽(𝑡) if 

there exist constants 𝜀 > 0 and 𝑘 > 0 such that, for any 

compatible initial condition 𝜙(𝑡), the solution 𝑥(𝑡) to the 

switched system (1) satisfies ‖𝑥(𝑡)‖ ≤

𝑘𝑒−𝜀(𝑡−𝑡0)‖𝑥(𝑡0)‖    ∀𝑡 ≥ 𝑡0. 

Definition 2 [16]: For a switching signal 𝛽(𝑡) and any 

time interval [𝑡1, 𝑡2], 𝑁𝛽𝑖(𝑡1, 𝑡2) represents the number of 

times that the 𝑖th subsystem is activated, and 𝑇𝑖(𝑡1, 𝑡2) 
represents the sum of the consecutively time of the 𝑖th 

subsystem, 𝑖 ∈  𝒮. We say that 𝛽(𝑡) has a mode-

dependent average dwell (MDADT) time 𝜏𝑖
𝑎 if there exist 

constants 𝑁0𝑖 and 𝜏𝑖
𝑎 such that: 𝑁𝛽𝑖(𝑡1, 𝑡2) ≤  𝑁0𝑖 +

𝑇𝑖(𝑡1,𝑡2)

𝜏𝑖
𝑎 

 , ∀𝑡2 ≥ 𝑡1 ≥ 0. 

Definition 3 [12]: For a switching signal 𝛽(𝑡) and any 

time interval [𝑡1, 𝑡2], 𝑁𝛽𝑖(𝑡1, 𝑡2) represents the number of 

times that the 𝑖th subsystem is activated, and 𝑇𝑖(𝑡1, 𝑡2) 
represents the sum of the running time of the 𝑖th 

subsystem, 𝑖 ∈  𝒮. If there exist constants 𝑁0𝑖 and 𝜏𝑖
𝑎 

such that: 𝑁𝛽𝑖(𝑡1, 𝑡2) ≥  𝑁0𝑖 +
𝑇𝑖(𝑡1,𝑡2)

𝜏𝑖
𝑎 

 , ∀𝑡2 ≥ 𝑡1 ≥ 0, 

then we say that the constant  𝜏𝑎𝑖, is the MDADT of the 

fast-switching signal 𝛽(𝑡). 
For stability analysis, for any time interval [𝑡𝑘, 𝑡𝑘+1) 

between two consecutive switching instances, we divide 

the interval into 𝐺𝛽(𝑡𝑘) divisions, and the length of each 

section is denoted by 𝐻𝛽(𝑡𝑘)
𝑖 , ∀𝑖 ∈ {1, … , 𝐺𝛽(𝑡𝑘)} as stated 

in [12]. For this purpose, define the 𝐽𝛽(𝑡𝑘)
𝑖 = ∑ 𝐻𝛽(𝑡𝑘)

𝑗𝑖
𝑗=1 , 

where 𝐽𝛽(𝑡𝑘)
0 = 0, ∀𝑖 ∈ {0,1, … , 𝐺𝛽(𝑡𝑘)}, and denote 

𝐿𝛽(𝑡𝑘)
𝑖 = [𝑡𝑘 + 𝐽𝛽(𝑡𝑘)

𝑖 , 𝑡𝑘 + 𝐽𝛽(𝑡𝑘)
𝑖+1 ), 𝑖 ∈ ℛ𝛽(𝑡𝑘) =

{0,1, … , 𝐺𝛽(𝑡𝑘) − 1}. 

Then, the time interval [𝑡𝑘, 𝑡𝑘+1) can be described as 

[𝑡𝑘, 𝑡𝑘+1) = ⋃ 𝐿𝛽(𝑡𝑘)
𝑖

𝑖 , 𝑖 ∈ ℛ𝛽(𝑡𝑘). 

Lemma 1 [12]: consider the following switched 

system 

𝑥̇(𝑡) = 𝑓𝛽(𝑡)(𝑥(𝑡)),                                                             (2) 

for 𝛽 ∈ 𝒢, if there exist scalars 𝛼𝛽 > 0, 0 < 𝜂𝛽 ≤

1, 𝜇𝛽 > 1, satisfying (𝜂𝛽)
𝐺𝛽−1𝜇𝛽 > 1  and also for 𝛽 ∈

𝒰, there exist scalars 𝛼𝛽 < 0 ,0 < 𝜂𝛽 ≤ 1, 0 < 𝜇𝛽 < 1. 

If there exist a set of continuously differentiable non-

negative functions 𝑉β
𝑖(𝑥(𝑡)), 𝛽 ∈ 𝒮, 𝑖 ∈ ℛ𝛽(𝑡𝑘), and two 

class 𝒦∞functions κ1 and κ2, such that ∀𝑖 ∈ ℛ𝛽(𝑡𝑘), 

κ1(‖𝑥(𝑡)‖) ≤ 𝑉β
𝑖(𝑥(𝑡)) ≤ κ2(‖𝑥(𝑡)‖) ∀𝛽 ∈  𝒮, 

𝑉̇β
𝑖
(𝑥(𝑡)) + 𝛼𝛽𝑉β

𝑖(𝑥(𝑡)) ≤ 0 ∀𝛽 ∈  𝒮, 

𝑉β
𝑖 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 )) − 𝜂𝛽𝑉β
𝑖−1 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 )) ≤ 0 ∀ 𝛽

∈ 𝒮, 𝑖 ≠ 0 

𝑉𝛽
0(𝑥(𝑡)) − 𝜇𝛽𝑉𝛾

𝐺𝛾−1(𝑥(𝑡)) ≤ 0 ∀(𝛽, γ) ∈ 𝒢 ×

 𝒮 , 𝛽 ≠ 𝛾, 

𝑉𝛾
0(𝑥(𝑡)) − 𝜇𝛾𝑉𝛽

𝐺𝛽−1(𝑥(𝑡)) ≤ 0 ∀(𝛽, γ) ∈ 𝒢 ×  𝒰, 

then switched system (2) is exponentially stable for any 

MDADT switching signals satisfying 

{

𝜏𝛽
𝑎 ≥ 𝜏𝛽

𝑎∗ =
ln 𝜇𝛽+(𝐺𝛽−1) ln 𝜂𝛽

𝛼𝛽
 , 𝛽 ∈  𝒢,

𝜏𝛽
𝑎 ≤ 𝜏𝛽

𝑎∗ =
ln 𝜇𝛽+(𝐺𝛽−1) ln 𝜂𝛽

𝛼𝛽
 , 𝛽 ∈  𝒰.

                         (3)       

According to Lemma 1, the switching law depends on 

the switching frequency to ensure system stability. The 

switching frequency in stable subsystems should be 

slowed down, so that the dwell time exceeds a specific 

value (this specific value is denoted by 𝜏𝛽
𝑎∗for 𝛽 ∈ 𝒢). 

Also, for unstable subsystems, the switching frequency 

must be speed up so that the dwell time is less than a 

specific value (this specific value is denoted by 𝜏𝛽
𝑎∗ for 

𝛽 ∈ 𝒰). Slow switching and fast switching determine 

these two values, which were expressed in Definition 2 

and Definition 3, respectively. 

It should be noted that in this method, it is sufficient to 

know the stability and instability of the active subsystem, 

which is an advantage.  

It is worth mentioning, since (𝜂𝛽)
𝐺𝛽−1𝜇𝛽 > 1 for 𝛽 ∈

𝒢, then ln(𝜂𝛽)
𝐺𝛽−1𝜇𝛽 > 0. So, we have ln 𝜇𝛽 + (𝐺𝛽 −

1) ln 𝜂𝛽 > 0. On the other hand, for 𝛽 ∈ 𝒢, 𝛼𝛽 > 0. So, 

𝜏𝛽
𝑎∗ > 0 for 𝛽 ∈ 𝒢. 

For 𝛽 ∈ 𝒰, we have, 0 < 𝜂𝛽 ≤ 1, 0 < 𝜇𝛽 < 1. So, 

ln 𝜇𝛽 < 0 and (𝐺𝛽 − 1) ln 𝜂𝛽 < 0. Hence, we have, 

ln 𝜇𝛽 + (𝐺𝛽 − 1) ln 𝜂𝛽 < 0. On the other hand, for 𝛽 ∈

𝒰, 𝛼𝛽 < 0. So finally, 𝜏𝛽
𝑎∗ > 0 for 𝛽 ∈ 𝒰. 

III.STABILITY ANALYSIS 

Now, we establish exponential stability conditions for 

the switched system (1) by using the mode-dependent 

average dwell time approach and the multiple 

discontinuous Lyapunov function method. The main 

results are given as the following theorems. 

Theorem 1: Consider the switched system (1). 

Suppose (A1) holds and for given scalars 𝛼𝛽 > 0, 0 <

𝜂𝛽 ≤ 1, 𝜇𝛽 > 1, 𝛽 ∈ 𝒢 satisfying (𝜂𝛽)
𝐺𝛽−1𝜇𝛽 > 1, and 

𝛼𝛽 < 0, 0 < 𝜂𝛽 ≤ 1, 0 < 𝜇𝛽 < 1, 𝛽 ∈ 𝒰 if there exist 

matrices 𝑃𝛽
𝑖 > 0, 𝑄𝑗𝛽

𝑖 > 0,  𝑅𝑗𝛽
𝑖 > 0, 𝑋𝛽

𝑖 , 𝑌𝛽
𝑖 , 𝑇𝛽

𝑖 =

(
𝑇𝛽11
𝑖 𝑇𝛽12

𝑖

𝑇𝛽21
𝑖 𝑇𝛽22

𝑖
) ≥ 0 ∀𝛽 ∈ 𝒮, 𝑖 ∈ ℛ𝛽(𝑡𝑘), such that  

{

𝑃𝛽
𝑖 ≤ 𝜂𝛽𝑃𝛽

𝑖−1 , 𝛽 ∈  𝒮 , 𝑖 ≠ 0 

𝑄𝑗𝛽
𝑖 ≤ 𝜂𝛽𝑄𝑗𝛽

𝑖−1 , 𝛽 ∈  𝒮 , 𝑖 ≠ 0

𝑅𝑗𝛽
𝑖 ≤ 𝜂𝛽𝑅𝑗𝛽

𝑖−1 , 𝛽 ∈  𝒮 , 𝑖 ≠ 0

                          (4. 𝑎) 
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{
 
 

 
 𝑃𝛽

0 ≤ 𝜇𝛽𝑃𝛾
𝐺𝛾−1 , (𝛽, γ) ∈ 𝒢 ×  𝒮 , 𝛽 ≠ 𝛾 

𝑄𝑗𝛽
0 ≤ 𝜇𝛽𝑄𝑗𝛾

𝐺𝛾−1 , (𝛽, γ) ∈ 𝒢 ×  𝒮 , 𝛽 ≠ 𝛾

𝑅𝑗𝛽
0 ≤ 𝜇𝛽𝑅𝑗𝛾

𝐺𝛾−1 , (𝛽, γ) ∈ 𝒢 ×  𝒮 , 𝛽 ≠ 𝛾

       (4. 𝑏) 

{
 
 

 
 𝑃𝛾

0 ≤ 𝜇𝛾𝑃𝛽
𝐺𝛽−1

 , (𝛽, γ) ∈ 𝒢 ×  𝒰  

𝑄𝑗𝛾
0 ≤ 𝜇𝛾𝑄𝑗𝛽

𝐺𝛽−1
 , (𝛽, γ) ∈ 𝒢 × 𝒰 

𝑅𝑗𝛾
0 ≤ 𝜇𝛾𝑅𝑗𝛽

𝐺𝛽−1
 , (𝛽, γ) ∈ 𝒢 ×  𝒰 

                    (4. 𝑐) 

and ∀𝛽 ∈ 𝒮 and ∀𝑖 ∈ ℛ𝛽(𝑡𝑘) 

𝛱𝛽
𝑖 = (

𝜋11
𝑖 (𝛽) 𝜋12

𝑖 (𝛽) 𝜋13
𝑖 (𝛽)

∗ 𝜋22
𝑖 (𝛽) 𝜋23

𝑖 (𝛽)

∗ ∗ 𝜋33
𝑖 (𝛽)

) < 0                      (5) 

Ψ𝛽𝑗
𝑖 = (

𝑇𝛽11
𝑖 𝑇𝛽12

𝑖 𝑋𝛽
𝑖

∗ 𝑇𝛽22
𝑖 𝑌𝛽

𝑖

∗ ∗ 𝑒−𝛼𝛽𝑑𝑗𝑅𝑗𝛽
𝑖

) ≥ 0                        (6) 

where  

𝜋11
𝑖 (𝛽) = 𝑃𝛽

𝑖𝐴0(𝛽) + 𝐴0
𝑇(𝛽)𝑃𝛽

𝑖 + ∑ (𝑄𝑗𝛽
𝑖 +𝑚

𝑗=1

𝑑𝑗𝑇𝛽11
𝑖 ) + 𝛼𝛽𝑃𝛽

𝑖 +𝑚(𝑋𝛽
𝑖 + 𝑋𝛽

𝑖 𝑇), 

𝜋12
𝑖 (𝛽) = (

𝑃𝛽
𝑖𝐴1(𝛽) + 𝑌𝛽

𝑖𝑇 − 𝑋𝛽
𝑖 + 𝑑1𝑇𝛽12

𝑖

⋮

𝑃𝛽
𝑖𝐴𝑚(𝛽) + 𝑌𝛽

𝑖𝑇 − 𝑋𝛽
𝑖 + 𝑑𝑚𝑇𝛽12

𝑖

)

𝑇

, 

𝜋13
𝑖 (𝛽) = (𝑑1𝐴1(𝛽)𝑅1𝛽

𝑖 ⋯ 𝑑𝑚𝐴𝑚(𝛽)𝑅𝑚𝛽
𝑖 ), 

𝜋22
𝑖 (𝛽) = −diag {𝑒−𝛼𝛽𝑑1(1 − 𝜎1)𝑄1𝛽

𝑖 + 𝑌𝛽
𝑖 + 𝑌𝛽

𝑖𝑇 −

𝑑1𝑇𝛽22
𝑖 , … , 𝑒−𝛼𝛽𝑑𝑚(1 − 𝜎𝑚)𝑄𝑚𝛽

𝑖 + 𝑌𝛽
𝑖 + 𝑌𝛽

𝑖𝑇 −

𝑑𝑚𝑇𝛽22
𝑖 }, 

𝜋23
𝑖 (𝛽) = (

𝑑1𝐴1
𝑇(𝛽)𝑅1𝛽

𝑖 ⋯ 𝑑𝑚𝐴1
𝑇(𝛽)𝑅𝑚𝛽

𝑖

⋮ ⋱ ⋮
𝑑1𝐴𝑚

𝑇(𝛽)𝑅1𝛽
𝑖 ⋯ 𝑑𝑚𝐴𝑚

𝑇(𝛽)𝑅𝑚𝛽
𝑖
), 

𝜋33
𝑖 (𝛽) = −diag {𝑑1𝑅1𝛽

𝑖 , … , 𝑑𝑚𝑅𝑚𝛽
𝑖 }, 

then the switched system (1) is exponentially stable for 

any MDADT switching signals satisfying (3). 

Proof: Consider the multiple discontinuous Lyapunov 

functional candidate for the switched system (1) with the 

following form ∀ 𝑡 ∈ 𝐿𝛽(𝑡)
𝑖 , 𝑖 ∈ ℛ𝛽(𝑡), 𝛽 ∈  𝒮: 

𝑉𝛽
𝑖(𝑥(𝑡)) = 𝑉𝛽1

𝑖 (𝑥(𝑡)) + 𝑉𝛽2
𝑖 (𝑥(𝑡)) + 𝑉𝛽3

𝑖 (𝑥(𝑡))      (7) 

𝑉𝛽1
𝑖 (𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝛽

𝑖𝑥(𝑡) 

𝑉𝛽2
𝑖 (𝑥(𝑡)) = ∑∫ 𝑒𝛼𝛽(𝑠−𝑡)𝑥𝑇(𝑠)𝑄𝑗𝛽

𝑖 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝑑𝑗(𝑡)

𝑚

𝑗=1

 

𝑉𝛽3
𝑖 (𝑥(𝑡)) = ∑∫ 𝑒𝛼𝛽(𝑠−𝑡)(𝑠 − 𝑡

𝑡

𝑡−𝑑𝑗

𝑚

𝑗=1

+ 𝑑𝑗)𝑥̇
𝑇(𝑠)𝑅𝑗𝛽

𝑖 𝑥̇(𝑠)𝑑𝑠, 

where 𝛼𝛽 > 0, 𝛽 ∈ 𝒢 and 𝛼𝛽 < 0, 𝛽 ∈ 𝒰 must be 

determined, and matrices  𝑃𝛽
𝑖 > 0, 𝑄𝑗𝛽

𝑖 > 0,  𝑅𝑗𝛽
𝑖 > 0 are 

to be obtained. Then, for a fixed 𝛽, we have 

 

𝑉̇𝛽1
𝑖 (𝑥(𝑡)) = 2𝑥𝑇(𝑡)𝑃𝛽

𝑖 𝑥̇(𝑡) 

                    = 2𝑥𝑇(𝑡)𝑃𝛽
𝑖 [𝐴0(𝛽)𝑥(𝑡)

+∑𝐴𝑗(𝛽)𝑥 (𝑡 − 𝑑𝑗(𝑡))

𝑚

𝑗=1

]              (8) 

𝑉̇𝛽2
𝑖 (𝑥(𝑡)) = −𝛼𝛽𝑉𝛽2

𝑖 (𝑥(𝑡))  

−∑(1

𝑚

𝑗=1

− 𝑑̇𝑗(𝑡)) 𝑒
−𝛼𝛽𝑑𝑗(𝑡)𝑥 (𝑡

− 𝑑𝑗(𝑡))
𝑇

𝑄𝑗𝛽
𝑖 𝑥 (𝑡 − 𝑑𝑗(𝑡))

+∑𝑥𝑇(𝑡)𝑄𝑗𝛽
𝑖 𝑥(𝑡)

𝑚

𝑗=1

 

                     ≤ −𝛼𝛽∑∫ 𝑒𝛼𝛽(𝑠−𝑡)𝑥𝑇(𝑠)𝑄𝑗𝛽
𝑖 𝑥(𝑠)𝑑𝑠

𝑡

𝑡−𝑑𝑗(𝑡)

𝑚

𝑗=1

 

−∑(1

𝑚

𝑗=1

− 𝜎𝑗)𝑒
−𝛼𝛽𝑑𝑗𝑥 (𝑡 − 𝑑𝑗(𝑡))

𝑇

𝑄𝑗𝛽
𝑖 𝑥 (𝑡

− 𝑑𝑗(𝑡)) +∑𝑥𝑇(𝑡)𝑄𝑗𝛽
𝑖 𝑥(𝑡)

𝑚

𝑗=1

         (9) 

𝑉̇𝛽3
𝑖 (𝑥(𝑡)) = ∑𝑑𝑗𝑥̇

𝑇(𝑠)𝑅𝑗𝛽
𝑖 𝑥̇(𝑠)

𝑚

𝑗=1

− 𝛼𝛽∑∫ 𝑒𝛼𝛽(𝑠−𝑡)(𝑠 − 𝑡
𝑡

𝑡−𝑑𝑗

𝑚

𝑗=1

+ 𝑑𝑗)𝑥̇
𝑇(𝑠)𝑅𝑗𝛽

𝑖 𝑥̇(𝑠)𝑑𝑠

−∑∫ 𝑒𝛼𝛽(𝑠−𝑡)𝑥̇𝑇(𝑠)𝑅𝑗𝛽
𝑖 𝑥̇(𝑠)𝑑𝑠

𝑡

𝑡−𝑑𝑗

𝑚

𝑗=1

  

                    ≤ ∑𝑑𝑗

𝑚

𝑗=1

[𝐴0(𝛽)𝑥(𝑡)

+∑𝐴𝑗(𝛽)𝑥 (𝑡

𝑚

𝑗=1

− 𝑑𝑗(𝑡))]

𝑇

𝑅𝑗𝛽
𝑖 [𝐴0(𝛽)𝑥(𝑡)

+∑𝐴𝑗(𝛽)𝑥 (𝑡 − 𝑑𝑗(𝑡))

𝑚

𝑗=1

] 

 [
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−𝛼𝛽∑∫ 𝑒𝛼𝛽(𝑠−𝑡)(𝑠 − 𝑡 + 𝑑𝑗)𝑥̇
𝑇(𝑠)𝑅𝑗𝛽

𝑖 𝑥̇(𝑠)𝑑𝑠
𝑡

𝑡−𝑑𝑗

𝑚

𝑗=1

−∑𝑒−𝛼𝛽𝑑𝑗∫ 𝑥̇𝑇(𝑠)𝑅𝑗𝛽
𝑖 𝑥̇(𝑠)𝑑𝑠

𝑡

𝑡−𝑑𝑗(𝑡)

𝑚

𝑗=1

.                        (10) 

We know that 𝑥(𝑡) − 𝑥 (𝑡 − 𝑑𝑗(𝑡)) = ∫ 𝑥̇(𝑠)𝑑𝑠
𝑡

𝑡−𝑑𝑗(𝑡)
 

for 1 ≤ 𝑗 ≤ 𝑚, then, for any matrices  𝑋𝛽
𝑖  and 𝑌𝛽

𝑖  with 

appropriate dimension, ∀𝑖 ∈ ℛ𝛽(𝑡), 𝛽 ∈  𝒮 we have 

∑2[𝑥𝑇(𝑡)𝑋𝛽
𝑖 − 𝑥 (𝑡 − 𝑑𝑗(𝑡))

𝑇

𝑌𝛽
𝑖] [𝑥(𝑡)

𝑚

𝑗=1

− 𝑥 (𝑡 − 𝑑𝑗(𝑡)) − ∫ 𝑥̇(𝑠)𝑑𝑠
𝑡

𝑡−𝑑𝑗(𝑡)

]

= 0.                                                     (11) 

For any matrix 𝑇𝛽
𝑖 = (

𝑇𝛽11
𝑖 𝑇𝛽12

𝑖

𝑇𝛽21
𝑖 𝑇𝛽22

𝑖
) ≥ 0, it yields 

∑𝑑𝑗

𝑚

𝑗=1

[
𝑥𝑇(𝑡)

𝑥𝑇 (𝑡 − 𝑑𝑗(𝑡))
]

𝑇

𝑇𝛽
𝑖 [

𝑥𝑇(𝑡)

𝑥𝑇 (𝑡 − 𝑑𝑗(𝑡))
]

−∑∫ [
𝑥𝑇(𝑡)

𝑥𝑇 (𝑡 − 𝑑𝑗(𝑡))
]

𝑇

𝑇𝛽
𝑖 [

𝑥𝑇(𝑡)

𝑥𝑇 (𝑡 − 𝑑𝑗(𝑡))
]

𝑡

𝑡−𝑑𝑗(𝑡)

𝑚

𝑗=1

𝑑𝑠

≥ 0.                                                                                      (12) 
Regarding (8) to (12), we have 

𝑉̇β
𝑖
(𝑥(𝑡)) + 𝛼𝛽𝑉β

𝑖(𝑥(𝑡)) ≤ 

𝜑𝑇(𝑡)𝛱𝛽
𝑖𝜑(𝑡) −∑∫ 𝜔𝑗

𝑇(𝑡, 𝑠)Ψ𝛽𝑗
𝑖 𝜔𝑗(𝑡, 𝑠)

𝑡

𝑡−𝑑𝑗(𝑡)

𝑚

𝑗=1

    (13) 

where 

𝜑(𝑡)=[𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − 𝑑1(𝑡)) ⋯ 𝑥𝑇(𝑡 − 𝑑𝑚(𝑡))]
𝑇
, 

𝜔𝑗(𝑡, 𝑠) = [𝑥
𝑇(𝑡) 𝑥 (𝑡 − 𝑑𝑗(𝑡)) 𝑥̇𝑇(𝑠)]

𝑇

, and 

𝛱𝛽
𝑖 = [

𝜋11
𝑖 (𝛽) 𝜋12

𝑖 (𝛽)

∗ 𝜋22
𝑖 (𝛽)

] +

∑ 𝑑𝑗
𝑚
𝑗=1 [

𝐴0(𝛽)

𝐴1(𝛽)
⋮

𝐴m(𝛽)

] 𝑅𝑗𝛽
𝑖 [𝐴0(𝛽) 𝐴1(𝛽) ⋯ 𝐴m(𝛽)]. 

By Schur complement for (5) we can get 𝛱𝛽
𝑖 ≤ 0. 

Consequently, due to Ψ𝛽𝑗
𝑖 ≥ 0, one has 

𝑉̇β
𝑖
(𝑥(𝑡)) + 𝛼𝛽𝑉β

𝑖(𝑥(𝑡)) ≤ 0   ∀𝛽 ∈  𝒮, 𝑖 ∈ ℛ𝛽(𝑡). (14) 

According to (4.a) and (7), ∀ 𝛽 ∈ 𝒮, 𝑖 ≠ 0 we have 

𝑉𝛽1
𝑖 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 )) − 𝜂𝛽𝑉𝛽1
𝑖−1 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 ))

≤ 𝑥𝑇(𝑡)[𝑃𝛽
𝑖 − 𝜂𝛽𝑃𝛽

𝑖−1]𝑥(𝑡) ≤ 0 

𝑉𝛽2
𝑖 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 )) − 𝜂𝛽𝑉𝛽2
𝑖−1 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 ))

≤∑∫ 𝑒𝛼𝛽(𝑠−𝑡)𝑥𝑇(𝑠)[𝑄𝑗𝛽
𝑖

𝑡

𝑡−𝑑𝑗(𝑡)

𝑚

𝑗=1

− 𝜂𝛽𝑄𝑗𝛽
𝑖−1]𝑥(𝑠)𝑑𝑠 ≤ 0  

𝑉𝛽3
𝑖 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 )) − 𝜂𝛽𝑉𝛽3
𝑖−1 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 ))

≤∑∫ 𝑒𝛼𝛽(𝑠−𝑡)(𝑠 − 𝑡
𝑡

𝑡−𝑑𝑗

𝑚

𝑗=1

+ 𝑑𝑗)𝑥̇
𝑇(𝑠)[𝑅𝑗𝛽

𝑖 − 𝜂𝛽𝑅𝑗𝛽
𝑖−1]𝑥̇(𝑠)𝑑𝑠

≤ 0  
therefore 

[𝑉𝛽1
𝑖 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 )) + 𝑉𝛽2
𝑖 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 ))

+ 𝑉𝛽3
𝑖 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 ))]

− 𝜂𝛽 [𝑉𝛽1
𝑖−1 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 ))

+ 𝑉𝛽2
𝑖−1 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 ))

+ 𝑉𝛽3
𝑖−1 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 ))] ≤ 0 

which yields ∀ 𝛽 ∈ 𝒮, 𝑖 ≠ 0  

𝑉β
𝑖 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 )) − 𝜂𝛽𝑉β
𝑖−1 (𝑥(𝑡𝑘 + 𝐽𝛽

𝑖 )) ≤ 0.        (15) 

According to (4.b) and (7), ∀(𝛽, 𝛾) ∈ 𝒢 ×  𝒮, 𝛽 ≠ 𝛾 

we obtain 

𝑉𝛽1
0 (𝑥(𝑡)) − 𝜇𝛽𝑉𝛾1

𝐺𝛾−1(𝑥(𝑡))

= 𝑥𝑇(𝑡) [𝑃𝛽
0 − 𝜇𝛽𝑃𝛾

𝐺𝛾−1] 𝑥(𝑡) ≤ 0 

𝑉𝛽2
0 (𝑥(𝑡)) − 𝜇𝛽𝑉𝛾2

𝐺𝛾−1(𝑥(𝑡))

=∑∫ 𝑒𝛼𝛽(𝑠−𝑡)𝑥𝑇(𝑠) [𝑄𝑗𝛽
0

𝑡

𝑡−𝑑𝑗(𝑡)

𝑚

𝑗=1

− 𝜇𝛽𝑄𝑗𝛾
𝐺𝛾−1] 𝑥(𝑠)𝑑𝑠 ≤ 0  

𝑉𝛽3
0 (𝑥(𝑡)) − 𝜇𝛽𝑉𝛾3

𝐺𝛾−1(𝑥(𝑡))

=∑∫ 𝑒𝛼𝛽(𝑠−𝑡)(𝑠 − 𝑡
𝑡

𝑡−𝑑𝑗

𝑚

𝑗=1

+ 𝑑𝑗)𝑥̇
𝑇(𝑠) [𝑅𝑗𝛽

0 − 𝜇𝛽𝑅𝑗𝛾
𝐺𝛾−1] 𝑥̇(𝑠)𝑑𝑠

≤ 0  
so, 

[𝑉𝛽1
0 (𝑥(𝑡)) + 𝑉𝛽2

0 (𝑥(𝑡)) + 𝑉𝛽3
0 (𝑥(𝑡))]

− 𝜇𝛽 [𝑉𝛾1
𝐺𝛾−1(𝑥(𝑡)) + 𝑉𝛾2

𝐺𝛾−1(𝑥(𝑡))

+ 𝑉𝛾3
𝐺𝛾−1(𝑥(𝑡))] ≤ 0 

which yields ∀(𝛽, 𝛾) ∈ 𝒢 ×  𝒮 , 𝛽 ≠ 𝛾  

𝑉𝛽
0(𝑥(𝑡)) − 𝜇𝛽𝑉𝛾

𝐺𝛾−1(𝑥(𝑡)) ≤ 0.                               (16) 

According to (4.c) and (7), ∀(𝛽, γ) ∈ 𝒢 ×  𝒰 we have 

𝑉𝛾1
0 (𝑥(𝑡)) − 𝜇𝛾𝑉𝛽1

𝐺𝛽−1
(𝑥(𝑡))

= 𝑥𝑇(𝑡) [𝑃𝛾
0 − 𝜇𝛾𝑃𝛽

𝐺𝛽−1
] 𝑥(𝑡) ≤ 0  

𝑉𝛾2
0 (𝑥(𝑡)) − 𝜇𝛾𝑉𝛽2

𝐺𝛽−1
(𝑥(𝑡))

=∑∫ 𝑒𝛼𝛽(𝑠−𝑡)𝑥𝑇(𝑠) [𝑄𝑗𝛾
0

𝑡

𝑡−𝑑𝑗(𝑡)

𝑚

𝑗=1

− 𝜇𝛾𝑄𝑗𝛽
𝐺𝛽−1

] 𝑥(𝑠)𝑑𝑠 ≤ 0  
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𝑉𝛾3
0 (𝑥(𝑡)) − 𝜇𝛾𝑉𝛽3

𝐺𝛽−1
(𝑥(𝑡))

=∑∫ 𝑒𝛼𝛽(𝑠−𝑡)(𝑠 − 𝑡
𝑡

𝑡−𝑑𝑗

𝑚

𝑗=1

+ 𝑑𝑗)𝑥̇
𝑇(𝑠) [𝑅𝑗𝛾

0 − 𝜇𝛾𝑅𝑗𝛽
𝐺𝛽−1

] 𝑥̇(𝑠)𝑑𝑠

≤ 0 

yields 

[𝑉𝛾1
0 (𝑥(𝑡)) + 𝑉𝛾2

0 (𝑥(𝑡)) + 𝑉𝛾3
0 (𝑥(𝑡))]

− 𝜇𝛾 [𝑉𝛽1
𝐺𝛽−1

(𝑥(𝑡)) + 𝑉
𝛽2

𝐺𝛽−1
(𝑥(𝑡))

+ 𝑉
𝛽3

𝐺𝛽−1
(𝑥(𝑡))] ≤ 0  

and implies ∀(𝛽, 𝛾) ∈ 𝒢 ×  𝒰 

𝑉𝛾
0(𝑥(𝑡)) − 𝜇𝛾𝑉𝛽

𝐺𝛽−1(𝑥(𝑡)) ≤ 0.                               (17) 

By considering (14)-(17), according to Theorem 1 in 

[12], if 𝜏𝛽
𝑎 satisfies (3),  on the time interval [0; 𝑇], we 

have 

𝑉𝛽(𝑇−)(𝑇
−) ≤ 𝑒𝑥𝑝 {∑(𝑁0𝛽 𝑙𝑛 𝜇𝛽(𝜂𝛽)

𝐺𝛽−1)

𝛽∈𝒢

+ ∑(𝑁0𝛽 𝑙𝑛 𝜇𝛽(𝜂𝛽)
𝐺𝛽−1)

𝛽∈𝒰

}

× 𝑒
𝑚𝑎𝑥
𝛽∈𝒮

{(
𝑙𝑛 𝜇𝛽(𝜂𝛽)

𝐺𝛽−1)

𝜏𝛽
𝑎 −𝛼𝛽)𝑇𝛽(𝑇,0)}

× (𝜂𝛽(0))
𝐺𝛽(0)−1𝑉𝛽(0)

0 (𝑥(0)), 

which 𝑁0𝛽 is a constant number. So, one can conclude 

that for any MDADT switching signal satisfying (3), 

𝑉β(𝑇−)(𝑥(𝑇)) converges to zero as 𝑇 → ∞. 

Finally, by Definition 1 and the first equation of 

Lemma 1, we can get that switched system (3) is 

exponentially stable, and the exponential decay rate is 

equal to max
𝛽∈𝒮

{
ln 𝜇𝛽(𝜂𝛽)

𝐺𝛽−1)

𝜏𝛽
𝑎 − 𝛼𝛽}.  

Remark 1: As mentioned before, in our switching 

mechanisms in Theorem 1, using the MDADT method, 

we design fast switching and slow switching for unstable 

and stable subsystems, respectively. This not only gives 

lower bounds that stable subsystems should dwell on but 

also provides the upper bounds that the MDADT of 

unstable modes cannot exceed. Such a switching strategy 

enables us to easily balance the dwell time between 

unstable and stable subsystems in a mode-dependent 

manner. This switching strategy cannot be applied to 

some other time-dependent switching signals like DT, 

ADT, due to the fact that they are not set in a mode-

dependent manner. On the other hand, it must be said that 

the MDLF in mentioned Theorem, is only a piecewise 

continuous function during the dwell time on each mode, 

unlike some common MLFs for switched systems, which 

requires that the Lyapunov function for each mode is 

continuously differentiable during the running time. 

Based on such a Lyapunov functional, tighter bounds on 

dwell time can be obtained, which undoubtedly enhances 

the application flexibility in practice. In MDLF if we 

choose 𝐺𝛽 = 1, which means that there is only one 

continuous Lyapunov function between two consecutive 

switching, then the MDLF directly reduces MLF. Thus, 

MLF is a special case of MDLF. One of the challenging 

issues of the MDLF is that all subsystems cannot be 

unstable without considering the case that when switched 

systems composed of stable and unstable subsystems, 

which may bring some limitations in actual operations. 

Remark 2: In Theorem 1, computable sufficient 

conditions formulated in the form of LMIs. When solving 

these LMIs, the parameters 𝛼𝛽, 𝐺𝛽 , 𝜂𝛽, and  𝜇𝛽 should be 

given in advance. To search tighter bounds on MDADT, 

the following procedures are introduced in [12]. To 

choose the corresponding parameters for the LMIs: First, 

noticing that 𝐺𝛽 do not affect the feasibility of the LMIs, 

so if the computer computation ability allows, 𝐺𝛽  can be 

chosen big enough, but otherwise, 𝐺𝛽 can be selected  

bigger for those modes needing tighter bounds on dwell 

time and smaller for the other modes to prevent the 

complexity of  computation. Second, the convergence rate 

(or divergence rate) 𝛼𝛽, can be estimated based on the 

eigenvalues of each subsystem. Third, setting the step 

lengths and the initial values of 𝜂𝛽and 𝜇𝛽, we can apply 

a two-layer loop program under the condition 

(𝜂𝛽)
𝐺𝛽−1𝜇𝛽 > 1 to solve the LMI conditions. Then, 

tighter bounds on MDADT can be identified among the 

obtained feasible solutions. It should be pointed out that 

from the energy view, the parameter 𝜂𝛽 also influence the 

decay rate 𝛼𝛽 of the MDLF. So that smaller 𝜂𝛽 can cause 

the infeasibility problem of the conditions. Hence, 𝐺𝛽 and 

𝜂𝛽 should be carefully designed depending on  the 

practical situations. However, it is worth noting that 

obtaining minimal MDADT is still an unsolved problem. 

IV.NUMERICAL EXAMPLES 

 

In this section, we present examples illustrating how 

our theoretical results can be applied to switched systems 

with multiple time-varying delays. 

Example 1: Consider a switched system with 𝑚 = 2, 

𝑁 = 2, and system parameters as followings: 

Subsystem 1 (Stable): 𝐴0(1) = (
0.2 −1
0.3 −0.5

), 

 𝐴1(1) = (
0.1 0.2
0 −0.3

), 𝐴2(1) = (
−0.1 0
0.1 0.4

). 

Subsystem 2 (Unstable): 𝐴0(2) = (
−0.3 1
0 0.5

), 

𝐴1(2) = (
0.1 0.1
0 −0.2

), 𝐴2(2) = (
−0.5 0
0.2 0.2

). 

and 𝑑1(𝑡) = 0.05 + 0.05 sin (𝑡),  𝑑2(𝑡) = 0.2 +
0.1 sin (𝑡). The switched system under the random 

switching signal becomes unstable, as shown in Fig. 1. 

Now, the stability of the switched system, under  
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Fig. 1.  States of the system with random switching signal. 

 

designed MDADT switching, is checked. By choosing 

𝛼1 = 2.9, 𝛼2 = −3.2, and 𝐺1 = 𝐺2 = 3 and 𝜇1 = 6, 

𝜇2 = 0.7 and 𝜂1 = 𝜂2 = 0.7, LMIs Conditions (4) to (6) 

is feasible, and by using above parameters, we obtain 

MDADT switching signals, 𝜏1
𝑎∗ = 0.945, 𝜏2

𝑎∗ = 0.551. 

Then, by giving initial state condition 𝑥(𝜃) =
(10 −5)𝑇, 𝜃 ∈ [−0.3,0], and the possible switching 

signals 𝜏1
𝑎 ≥ 𝜏1

𝑎∗ = 0.95, 𝜏2
𝑎 ≤ 𝜏2

𝑎∗ = 0.5, the resultant 

state responses and the phase trajectories of the system 

under designed switching signal, are shown in Fig. 2. 

From Fig. 2 it can be seen the system is stable under our 

designed MDADT switching signal, which shows the 

effectiveness of the results. 

Example 2: Consider the switched delay system (1) as 

in [36], with 𝑚 = 2, 𝑁 = 2, and system parameters as 

followings: 

Subsystem 1 (Unstable): 𝐴0(1) = (
2 2
1 3

), 

 𝐴1(1) = (
0.1 −0.1
0.2 0.1

), 𝐴2(1) = (
−0.1 0.2
−0.2 0.1

). 

Subsystem 2 (Stable): 𝐴0(2) = (
−0.3 1
0 0.5

), 

 𝐴1(2) = (
0.1 −0.1
0.2 0.1

), 𝐴2(2) = (
−0.1 0.2
−0.2 0.1

). 

We compare our results with the one in [36]. By using 

Theorem 1, and choosing 𝐺1 = 𝐺2 = 3, and considering 

TABLE I, which represents the design parameters, the 

LMIs conditions (4)-(6) is feasible. The comparison 

results are listed in TABLE II. 

 
TABLE  I 

DESIGN PARAMETERS 

Methods 𝑑1 = 𝑑2 = 0.5 ,  𝜎1, 𝜎2 ≤ 0.1693 

Theorem 1 of [36] 
𝜇 = 1.053 

𝛼 = 0.05 

Theorem 1 

𝜇1 = 9.4, 𝜇2 = 0.89 

𝜂1 = 𝜂2 = 0.9 

𝛼1 = 1, 𝛼2 = −1.1 

 
TABLE  II 

COMPARATIVE RESULTS OF 𝜏𝛽
𝑎∗ 

Methods 𝑑1 = 𝑑2 = 0.5 ,  𝜎1, 𝜎2 ≤ 0.1693 

Theorem 1 of [36] 
𝜏𝑎∗ =0.5164 

𝜏1
𝑎 ≥ 𝜏𝑎∗ = 4.6, 𝜏2

𝑎 ≤ 𝜏𝑎∗ = 0.4 

Theorem 1 
𝜏1
𝑎∗ = 2.03, 𝜏2

𝑎∗ = 0.298 

𝜏1
𝑎 ≥ 𝜏1

𝑎∗ = 2.05, 𝜏2
𝑎 ≤ 𝜏2

𝑎∗ = 0.29 

 
Fig. 2.  States of the system for 𝑥(𝜃) = (10 −5)𝑇, and convergent phase trajectories for different initial conditions of the system with 

designed MDADT switching signal. 
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It is clear that the obtained results in this paper are less 

conservative than the results of [36], in determining the 

tighter dwell time band. Because according to Theory 1 of 

reference of [36], in a switching period of time that is 𝜏1
𝑎 +

𝜏2
𝑎 = 5 seconds, the dwell time of the unstable subsystem 

is 0.4 seconds and equal to 8% of the total switching time. 

But according to the proposed method in Theorem 1, in the 

same time period, the dwell time of the unstable subsystem 

is equal to 12.8% of the total switching time, which makes 

the tighter dwell time band. By considering TABLE II, we 

can obtain the state response with initial state 

condition 𝑥(𝜃) = (10 20)𝑇 , 𝜃 ∈ [−0.6693,0] and the 

phase trajectories of the system, as shown in Fig. 3. We 

can see that the switched system is stable under designed 

MDADT switching signal.  

V.CONCLUSION 

In this paper, stability analysis was investigated for a 

class of switched systems with multiple time-varying 

delays. By using, the MDLF approach and using MDADT 

switching regime, sufficient conditions in the form of 

LMIs have been proposed to guarantee the exponential 

stability of the switched system with the existence of 

unstable subsystems, which offers a tighter dwell time-

bound with less conservativeness. Finally, two examples 

were given to illustrate the effectiveness of the obtained 

theoretical results, and to clarify the differences with other 

works the proposed method was compared with the 

existing methods. The comparison showed that a tighter 

bound of dwell time, can be achieved with the proposed 

me
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