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Abstract—This paper investigates the problem of
exponential stability of switched systems with multiple
time-varying delays. By using the multiple discontinuous
Lyapunov function (MDLF) approach and the mode-
dependent average dwell time (MDADT) switching signal,
new conditions in the form of linear matrix inequalities
(LMIs) are proposed, which is the first attempt in this area.
These conditions guarantee the exponential stability of the
switched system with stable and unstable subsystems where
multiple time-varying delays are considered in the states. In
this method all subsystems cannot be unstable, and switched
system should compose of at least one stable subsystem.
Furthermore, two examples are given to illustrate the
effectiveness of the obtained theoretical results.
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I.INTRODUCTION

witched systems, as a significant class of hybrid

systems, have been widely studied in recent years [1-
3]. It is known that many real-world systems can be
modeled as switched systems, for example, multi-agent
systems [4], control in networks [5, 6], chemical process
systems [7], flight control systems [8], and
communication systems [9]. Mainly in continuous-time
systems, the stability analysis tools used by Lyapunov
include the common Lyapunov function method (CLF)
and the multiple Lyapunov function(MLF) method [10].
Since it is difficult to find a common Lyapunov function
for all subsystems, it is impossible to permanently ensure
the stability of a switched system under an arbitrary

switching signal. Therefore, a logical solution is to
consider stability with constrained switching signals. The
literature confirms that the MLF approach not only has
more flexibility but also it is possible to provide less
conservatism in the analysis of switched systems [11].
Recently, the authors in [12], developed the MDLF
approach for stability analysis with a new switching
regime. In this work, fast switching applies to unstable
subsystems, and slow switching applies to stable
subsystems.

Research in the field of stability analysis with
constrained switching have been chiefly motivated by
state-dependent  switching  [13], time-dependent
switching, and a combination of them. However, the
time-dependent switching strategy has been recognized
to be more flexible and efficient than state-dependent
switching in the stability analysis [12]. Time-dependent
switching signals usually consist of three significant
groups of switching regimes; dwell time (DT), average
dwell time (ADT), and MDADT switching signals. In
[14] using DT, a sufficient condition to ensure the
asymptotic stability of switched systems with all unstable
subsystems has been proposed. Stability analysis for
switched positive linear systems with average dwell time
switching is revisited and discussed in both continuous-
time and discrete-time contexts in [15]. The MDADT
approach is more suitable in practice than the DT and
ADT methods because the switching law allows each
subsystem to have its own separate ADT [16]. Some
results on the MDADT approach applied to switched
systems are presented in [17-20]. Here, each Lyapunov
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function is piecewise continuous throughout the DT for
an activated system mode. Researchers have shown that
the MDLF approach can achieve tighter bounds on ADT
or MDADT.

On the other hand, time delays widely exist in many
practical systems, such as aircraft, chemical or process
control systems, and communication networks, either in
the state, the control input, or the measurements [15].
Hence, the study of time-delay systems has been of great
interest in many branches of science and engineering
applications. For instance, in [21], a new delay-
dependent robust stability condition for a type of
uncertain linear system is proposed using the augmented
Lyapunov—Krasovskii ~ functional —and  Jensen’s
inequality. Moreover, it is worth to mention that the
multiple time-varying delay attract considerable research
interest in recent years (see [22-25] and references
therein). In [26], the delay-dependent stability condition
of Lurie control systems with multiple time delays is
obtained by applying the technique of analyzing
inequality and the method of decomposing the matrices.
Switched time delay systems have strong engineering
contextual in power systems and multi-rate control
systems [27, 28]. So, we make a try to introduced
multiple time-varying delays to switched systems. It is
exciting and challenging to investigate the stability
problem of switched time-delay systems. In [29], the
authors have presented the model reference tracking
control problem for a class of switched nonlinear systems
with multiple time-varying delays. From the studies
conducted, we can mention [30-33] in singular systems,
which provides the stability analysis of a class of singular
switched delayed systems with arbitrary switching
signals.

In [34], the authors obtained stability and stabilization
conditions for switched time delay systems, but the
intended delays for the time delay system are not
multiple, which somehow limits the application. This
paper extends the time delays considered in [34] to
multiple time-varying delays for switched system
stability, which removes the previous limitation.

In this paper, we focus on the problem of stability
analysis of a continuous-time switched system, including
stable and unstable subsystems and multiple time-
varying delays in the states. Using the MDLF approach
and the MDADT switching, a set of sufficient conditions
is proposed to guarantee the exponential stability of the
switched system. Compared with the relevant literature,
the main contribution of this paper is as follows: (i) The
stability issue of switched systems with multiple time-
varying delays is studied by employing the MDLF
approach, which is the first attempt in this area; (ii) New
sufficient criteria are derived, ensuring the stability of
switched systems with multiple time-varying delays.
This offers a tighter dwell time-bound with less
conservativeness. (iii) Typically, in the literature,
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subsystems are only considered stable, which is a
restriction. However, in this paper, subsystems can be
both stable and unstable. The rest of this paper is
organized as follows. Some necessary concepts of
switched delay systems are reviewed in Section 2. In
Section 3, exponential stability conditions for switched
systems with multiple time-varying delays are
established. Two examples show the effectiveness of the
obtained results in Section 4, and we conclude this paper
in Section 5.

11.SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a class of switched systems with multiple
time-varying delays as the following equation:
m

(O = 4Ex© + ) 4B (- 4®), O
j=1

x(t) = ¢(t), t € [-d,0],

where  x(t) € R", denotes the state, and

{(46(B), ... A (B)): B € S} is a set of matrices, which

take its values by an index set § = {1,2, ..., N}, in which

N > 1 represents the number of subsystems. In here,

S = G UTU, where G and U signify the sets composed of

stable and unstable subsystems respectively, and

B(t):[0,00) — S denotes a switching signal which is a

piecewise constant function of time t that might depend

on t or x(t). From now on, for simplicity, at a specified

time ¢, the B(t), denoted by B. d;(t), 1<j<m,

represents the time-varying delays satisfying (Al) as

stated below:

(A1) 0<d;(t) <d, d;(t) <g; <1,

let d = max {d;(©}. Furthermore, ¢(t) is an initial

vector valued continuous function on [—d,0] for a
known constant d > 0. It should be emphasized from the
theory of delay differential equations [35] that the
existence of the solutions of a non-switched linear delay
system is guaranteed by a continuous and piecewise
differentiable initial condition. Consider the following
non-switched delay system:

x(t) = Ax(t) + Agx(t — d),

x(0) = ¢(6),0 € [—d,0].

When ¢(0) is continuous, then there exists a unique
solution x(¢) defined on [—d, ) that coincides with ¢
on [—d, 0]. By the Lagrange’s formula, this solution is
given by

t
x(t) = exp 4tx(0) + f exp 4¢=94,x(0 — d)de
0
= exp 4*x(0) + f_t;d exp At=0-D A, x(6)d6.

This is carried over to linear switched-delay systems
since the state does not experience any jump at the
switching instants, based on [27].

In accordance with the switching signal 8, we have the
switching sequence
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{(.BOv tO)' (.81' tl)' (ﬁZ' tZ)' Y (.Bk' tk)' Tt |ﬁk €S, k=
0,1,2,---} with t, =0, which means that the pj-th

subsystem is activated when t € [ty, t;,1)-

Now, considering above systems, the following
definitions and lemmas are made through the paper:

Definition 1 [11]: Switched system (1) is said to be
exponentially stable under the switching signal g(t) if
there exist constants € > 0 and k > 0 such that, for any
compatible initial condition ¢ (t), the solution x(t) to the
switched system @) satisfies lx(®)Il <
ke sEt)||x(t)]| Vt = t,.

Definition 2 [16]: For a switching signal g(t) and any
time interval [tq, t,], Np;(t,, t;) represents the number of
times that the ith subsystem is activated, and T;(t,,t,)
represents the sum of the consecutively time of the ith
subsystem, i € §. We say that B(t) has a mode-
dependent average dwell (MDADT) time t{* if there exist
constants No; and " such that: Ng;(t;,t;) < No; +

Ti(t1,t2)
B2 v, >t = 0.

Definition 3 [12]: For a switching signal 8(t) and any
time interval [t,, t,], Ng;(t,, t;) represents the number of
times that the ith subsystem is activated, and T;(¢t;, t,)
represents the sum of the running time of the ith

subsystem, i € S. If there exist constants Ny; and t{*

such that: Ng;(t;, t,) = No; + Ti(j;'tz) Vi, >t >0,

then we say that the constant t,;, is the MDADT of the
fast-switching signal B (t).

For stability analysis, for any time interval [ty, t;,1)
between two consecutive switching instances, we divide
the interval into Gg (., divisions, and the length of each

section is denoted by Hp,, Vi € {1, ..., G} as stated
in [12]. For this purpose, define the ]ti?(tk) = Z§-=1 Hé(tk),
where Jgiy =0, Vi€{0,1,..,Gge,p}, and denote
Lyt = [tk + T tie +Jten):
{0.1,.., Gy — 1}

Then, the time interval [¢, t;,1) can be described as
[t trer1) = UiLgeer & € Rpcey)-

Lemma 1 [12]: consider the following switched
system
() = foo (x(®), @
forp € g, if there exist scalarsag > 0,0 <mng <
1, ug > 1, satisfying (ng)®# g > 1 and also for g €
U, there exist scalars ap < 0,0 <1 <1,0<pug <1.
If there exist a set of continuously differentiable non-
negative functions Vg’ (x(t)), B € S, i € Rp(r,, and two
class K, functions i; and «,, such that Vi € Rp(,),

(@) < Va'(x(®) < e (lx@®I) VB € 5,

i € :Rﬁ(tk) =

29

Vo' (x(ti +75)) = gV ™ (x(te +75)) <OV B
€S, i+0

Ve (x(®) — ugV, M (x(0)) < 0V(B,Y) €G X

S,B#v,

VA(x(®) = m Vo (x() <OV, EG X U,

then switched system (2) is exponentially stable for any

MDADT switching signals satisfying

* 1 Gp-1)1
g2y =D pe g
B =Tp = )
3
* 1 Gp-1)1
18 < ¢ = REptCpTUNIg g e qp
p=Tp =

According to Lemma 1, the switching law depends on
the switching frequency to ensure system stability. The
switching frequency in stable subsystems should be
slowed down, so that the dwell time exceeds a specific
value (this specific value is denoted by rg*for B € Q).
Also, for unstable subsystems, the switching frequency
must be speed up so that the dwell time is less than a
specific value (this specific value is denoted by rg* for
B € U). Slow switching and fast switching determine
these two values, which were expressed in Definition 2
and Definition 3, respectively.

It should be noted that in this method, it is sufficient to
know the stability and instability of the active subsystem,
which is an advantage.

It is worth mentioning, since (nﬁ)‘;ﬁ‘luﬁ >1forp e
G, then In(n)“f ™ g > 0. So, we have Inpug + (Gg —
1) Inng > 0. On the other hand, for g € G, ag > 0. So,
75" >0forgeg.

For p €U, we have, 0 <ng <1, 0<uz<1. So,
Inug <0 and (Gg —1)Inng < 0. Hence, we have,
Inug + (Gg — 1) Inng < 0. On the other hand, for g €
U, ag < 0. So finally, 7" > 0 for B € U.

I11.STABILITY ANALYSIS

Now, we establish exponential stability conditions for
the switched system (1) by using the mode-dependent
average dwell time approach and the multiple
discontinuous Lyapunov function method. The main
results are given as the following theorems.

Theorem 1: Consider the switched system (1).
Suppose (A1) holds and for given scalars az > 0,0 <

ng <1, ug > 1, B € G satisfying (ng)“f g > 1, and
ap<0,0<mp <1, 0<pz<1,p€UIif there exist
matrices P[; >0, Qjp>0, Rip>0, XpVYsTg=

Ti, T}
( i 512) = 0Vp €S, i€ R, such that
Tl Tl k
B21 B22

Py<ngPy', PBES,i#0
Q]i.ﬁ gnﬁQ;ﬁgl, BES,i+0 (4.a)
Rig <mgRjz', PBES,i#0
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PE<ugh . (BYEGXS,BEY
Qo <ugQ . BYVEGXSBEY (4.
Ry <ugR"™",  (BYEGX Sy

B <wP,  (Byegxu

Qjy < “yQJi;B_l' By)egxU (4.0)
Rjy < VR,;B_I' ByegxU

and Vp € § and Vi € Ry,
7T1i1([”) ﬂiz(ﬂ) ﬂis(ﬁ)

g = * mh(B) w3 (B) | <0 (5)
o x m(e)
Tgrr Thaz Xp

Wii=| * Thy Ys >0 (6)
* * e_“BdJ'R}ﬁ

where

i (B) = PiA(B) + Ay (B)Ph + X7, (Qip +
d;Ti,) + agPi+m (X;; + X;;T),

, , , , T
| PLALB) + Vi — X+ dyThy,
() = A ,
| PyAm(B) + Yy — Xp + dnTgi,
mi3(B) = (d1A1(3)Riﬁ dmAm(BR; ﬁ)

1, () = —diag {e ™6 (1 — 0,)Ql, + Vi + ¥}
dyThyps e (1 = 0,))Qhg + Vi + Y5 —

i —
meﬁizZ}’ )
, d, A" ()R dnAs" (B)Rig
m3(B) = P S
dlAmT(ﬁ)Riﬁ dmAmT(B)R:nB
i, (B) = —diag {leiﬁ, ...,dmR,inB},

then the switched system (1) is exponentially stable for
any MDADT switching signals satisfying (3).

Proof: Consider the multiple discontinuous Lyapunov
functional candidate for the switched system (1) with the
following form V ¢ € Ly ), i € Rg(r), B € S:
Vﬁ‘(x(t)) Vi (x() + Vi, (x(®) + Vi (x(@®) (D)
Vi, (x(@) = xT(t)Pﬁx(t)

Vﬁz(x(t)) Zf " aB(S—t)xT(S)Q;ﬁx(s)ds

Vis(x(@) = Zf e“ﬁ(s't)(s —t
j=1

+ d 1 )%T (SR ﬁx(s)ds
where ag >0,€G andag <0,f €U must be
determined, and matrices P; >0, Qjz > 0, Rj; > 0 are
to be obtained. Then, for a fixed S, we have

30

Vi (x() = 2xT (£) Pa (1)

= 2x" () Pz | Ao (B)x(8)

j=1

£ 4Ex(t-q @ﬂ ®)

Vg (x(8)) = =gV, (x(0))

_ Z (1
=
- dj(t)) e~ %Oy (t
- dj(t))T Qlpx (t - 4,®)
¥ Z X ()i x()

m

Z f “ﬁ(s‘t)xT(s)Qjﬁx(s)ds
t

= Ut
m

20

_ aj)e “six (£ — d]-(t))T Qipx(t
—d;(®) + Z " (OQpx(@®  (9)

=

D 4T ($)Rigi(s)

=
moot

—ag ZJ e“ﬁ(s_t)(s —t
t—

+d; )xT(s) ﬁx(s)ds
- ZJ e“ﬁ(s_t)xT(s)R}Bx(s)ds
=1 t—d;
m

WAVNOEG

j_

£ 4t
j=1
—@mﬂ

£ 4@ (c-q (t))‘
=1

Ao (B)x(t)
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m
t
—ag Zf e“ﬁ(s_t)(s —t+ dj)xT(s)R}ﬁX(s)ds
j=17t74j

m ¢

- Z e‘“ﬁdff xT(s)R ﬁx(s)ds (10)
= t—d;(t)
We know that x(6) — x (£ — d;(©)) = J,_, ¢, %()ds

for 1 < j < m, then, for any matrices Xﬁ and Yﬁ with
appropriate dimension, Vi € Rp (), f € S we have

i 2 [xT(t)Xé —x(t- dj(t))T Yg] [x(t)
=1

—x(t—d;(®) - ft _dj(t)fc(s)dsl
For any matrix T} = (Tﬁl:“ Tz ) > 0, it yields
T321 Tﬁzz

m T(t) T(t)

;d t—d(t) t—d(t)

_ i f t T(t) T(t)
Lo |27 (£ - 4®) (t-a;®)

> 0. 12)

Regarding (8) to (12), we have
VB (X(t)) + aﬁVﬁ (X(t)) <

T Ik _ T : Wi . , 13
o (M) Z f PICUCLTCRNC
where
O=[x"(®) x"(t—di(®) -~ x"(t—dn®)],

T

wi(t,s) = [x"(©) x(t—a;®) *7(s)] ,and

i ”il(ﬁ) ”iz(ﬂ)]

175 [ * ”éz(ﬁ) *
40()

siady [P RETA) 4B A
An(B)

By Schur complement for (5) we can get 17;;, <0.
Consequently, due to ‘Péj > 0, one has

Vo' (x(6)) + apV'(x()) < 0 VB € §,i € Rypy. (14)
According to (4.a) and (7), V B € S,i # 0 we have

Vi, (x(tk +][§)) —npVs;t (x(tk +];;))
< xT(t) [Pé - n,;Pé‘l]x(t) <0

Vi, (x(tk +];;)) /% (x(tk +];;))

Mmoot
ST ewenion
=1 t—dj(t)

- r)BQ]i-l}l]x(s)ds <0

Vis (x(tk +];;)) L/ (x(tk +];'3))

LI
< Zf e®BC0(s — ¢t

j=1 t_dj . .
+d;)xT(s) [R;B - nBR}lgl]fc(s)ds
<

therefore
(Vi (et +5)) + Vi (x(te +75))
+ Vs (x(tk +];;))]
g [Vﬁifl (x(tk +f/i3))
+ V45" (x(tk +];;))
+ it (x(t +75))| < 0
which yieldsv g € §,i #0
Ve (x(ti +75)) = npVe™ (x(te +75)) < 0. (15)
According to (4.b) and (7), V(B,Y) EGX S§,B#VY
we obtain

Vi (x(®) = ug¥y " (x (@)
=xT(6) [P§ - ugP ' x(®) < 0
Ve (x(©) = gV, (x (@)

mot
2] o (o
=1 t—dj(t)

- uﬁQﬁ,"_l] x(s)ds <0
GO aNCIO)

t
=Zf e (s — ¢

=1 7t-d;

+d;)x7(s) [RJOB HgR; ]x(s)ds
<0

SO,

[V (x(®) + V&, (x(®) + Vs (x(®)]
— g [ (x0) + vy T (x(®)
+4 7 )] < 0

which yieldsV(B,y) eGx §,B#vy

V2 (x(®)) — ugV, 1 (x(®) < 0. (16)
According to (4.c) and (7), V(B,v) € G X U we have

VA (x(®) =V (x(®)
= xT(t) [PYO - #VP;””I] x(t) <0
VH(x(0) = m V! (@)

mo ot
[ ool
j=1 t—dj(t) g

Gg-1
— qu].Bﬁ x(s)ds <0

31
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VA (x(©) = m V" (x(0)

moot
SV
j=1 t—d]'

+d;)17(s) [Rfy _ y}e]ﬁ"_1 %(s)ds
<0

yields

VA (x (@) + V% (x(®) + Vy"3 (x(®))]
~ty [ (@) + 1, (x )

(x(t))] <0
and impliesV(B,y) € G X U
K0(x(®0) — 1, Vs (x(0) < 0. (17)

By considering (14)-(17), according to Theorem 1 in
[12], if 74 satisfies (3), on the time interval [0;T], we
have

Vor) () < expd > (Nop b g (1))
Beg

) Wop Inpp (1))

Beu

Gp—-1
Inugmg) P )
r/r}lggc{(T—aﬁ Tﬁ(T.O)
Xe

X (1) PO Vi) (x(0)),
which Nog is a constant number. So, one can conclude
that for any MDADT switching signal satisfying (3),
Vaer-y(x(T)) converges to zero as T — co.
Finally, by Definition 1 and the first equation of
Lemma 1, we can get that switched system (3) is
exponentially stable, and the exponential decay rate is

Gp—-1
equal to max {% - aﬁ}. O
BES 3

Remark 1: As mentioned before, in our switching
mechanisms in Theorem 1, using the MDADT method,
we design fast switching and slow switching for unstable
and stable subsystems, respectively. This not only gives
lower bounds that stable subsystems should dwell on but
also provides the upper bounds that the MDADT of
unstable modes cannot exceed. Such a switching strategy
enables us to easily balance the dwell time between
unstable and stable subsystems in a mode-dependent
manner. This switching strategy cannot be applied to
some other time-dependent switching signals like DT,
ADT, due to the fact that they are not set in a mode-
dependent manner. On the other hand, it must be said that
the MDLF in mentioned Theorem, is only a piecewise
continuous function during the dwell time on each mode,
unlike some common MLFs for switched systems, which
requires that the Lyapunov function for each mode is
continuously differentiable during the running time.
Based on such a Lyapunov functional, tighter bounds on

32

dwell time can be obtained, which undoubtedly enhances
the application flexibility in practice. In MDLF if we
choose Gg =1, which means that there is only one
continuous Lyapunov function between two consecutive
switching, then the MDLF directly reduces MLF. Thus,
MLEF is a special case of MDLF. One of the challenging
issues of the MDLF is that all subsystems cannot be
unstable without considering the case that when switched
systems composed of stable and unstable subsystems,
which may bring some limitations in actual operations.
Remark 2: In Theorem 1, computable sufficient
conditions formulated in the form of LMIs. When solving
these LMIs, the parameters ag, Gg, 13, and ug should be
given in advance. To search tighter bounds on MDADT,
the following procedures are introduced in [12]. To
choose the corresponding parameters for the LMIs: First,
noticing that G do not affect the feasibility of the LMIs,
so if the computer computation ability allows, G can be
chosen big enough, but otherwise, Gz can be selected
bigger for those modes needing tighter bounds on dwell
time and smaller for the other modes to prevent the
complexity of computation. Second, the convergence rate
(or divergence rate) ag, can be estimated based on the
eigenvalues of each subsystem. Third, setting the step
lengths and the initial values of ngand ug, we can apply
a two-layer loop program under the condition
(np)°F'up > 1 to solve the LMI conditions. Then,
tighter bounds on MDADT can be identified among the
obtained feasible solutions. It should be pointed out that
from the energy view, the parameter 7 also influence the
decay rate a of the MDLF. So that smaller n; can cause
the infeasibility problem of the conditions. Hence, G and
ng should be carefully designed depending on the
practical situations. However, it is worth noting that
obtaining minimal MDADT is still an unsolved problem.

IV.NUMERICAL EXAMPLES

In this section, we present examples illustrating how
our theoretical results can be applied to switched systems
with multiple time-varying delays.

Example 1: Consider a switched system with m = 2,
N = 2, and system parameters as followings:

Subsystem 1 (Stable): A,(1) = (8; _015)

o= %) =00 )

Subsystem 2 (Unstable): AO(Z)—( 83 1),

4.2) = (01 01) 4,(2) = (05 0?2)

and d,(t) = 0.05 + 0.05 sin (t), d,(t) =02+

0.1sin (t). The switched system under the random

switching signal becomes unstable, as shown in Fig. 1.
Now, the stability of the switched system, under
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o
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Sample Time/s

Fig. 1. States of the system with random switching signal.

designed MDADT switching, is checked. By choosing
a;, =29, ay =-32, and G, =G, =3 and u, =6,
u, = 0.7 and n; = n, = 0.7, LMIs Conditions (4) to (6)
is feasible, and by using above parameters, we obtain
MDADT switching signals, t¢" = 0.945, 7¢" = 0.551.
Then, by giving initial state condition x(0) =
(10 -5)T, 8 € [-0.3,0], and the possible switching
signals ¢ > 78" = 0.95, 7 < 7¢" = 0.5, the resultant
state responses and the phase trajectories of the system
under designed switching signal, are shown in Fig. 2.
From Fig. 2 it can be seen the system is stable under our
designed MDADT switching signal, which shows the
effectiveness of the results.

Example 2: Consider the switched delay system (1) as
in [36], with m = 2, N = 2, and system parameters as
followings:

Subsystem 1 (Unstable): A,(1) = (2 2),

1 3
_ (01 —0.1 _ (=01 02
A, (D) = (0_2 0.1 ) A (D) = (—0.2 0.1)'
_ -03 1
Subsystem 2 (Stable):  A4o(2) =( 0 05)’

0.1 -01 -0.1 0.2
4:(2) = (0.2 0.1 ) 4(2) = (—0.2 0.1)'

We compare our results with the one in [36]. By using
Theorem 1, and choosing G, = G, = 3, and considering
TABLE I, which represents the design parameters, the
LMIs conditions (4)-(6) is feasible. The comparison
results are listed in TABLE II.

TABLE |
DESIGN PARAMETERS

Methods dy=d,=05, 0,0, <0.1693
u=1.053
Theorem 1 of [36]
a = 0.05

uy =94, u, =0.89

Theorem 1 N =1, =09
a;=1,a,=-11
TABLE 1l
COMPARATIVE RESULTS OF r;}*
Methods d,=d, =05, 04,0, <0.1693
T =0.5164

Theorem 1 of [36] . .
=14 =46,79 <1* =04

78" = 2.03,7¢" = 0.298

¢ > 18" =2.05,1¢ < ¢ =0.29

Theorem 1

States of the Closed-loop System

15 T T T T

States Responses
<

T T T T T

X1(t)
x2(t)

| | | | |

Phase Trajectories of the Closed-loop System
T T T T T T T

20

25 30 35 40 45 50

Sample Time/s

Designed MDADT Switching Signal

System Mode

0 5 10 15 20 25 30 35 40 45 50
Sample Time/s

Fig. 2. States of the system for x(8) = (10 —5)7, and convergent phase trajectories for different initial conditions of the system with
designed MDADT switching signal.
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It is clear that the obtained results in this paper are less
conservative than the results of [36], in determining the
tighter dwell time band. Because according to Theory 1 of
reference of [36], in a switching period of time that is T +
t9 = 5 seconds, the dwell time of the unstable subsystem
is 0.4 seconds and equal to 8% of the total switching time.
But according to the proposed method in Theorem 1, in the
same time period, the dwell time of the unstable subsystem
is equal to 12.8% of the total switching time, which makes
the tighter dwell time band. By considering TABLE 11, we
can obtain the state response with initial state
condition x(8) = (10 20)7,8 € [-0.6693,0] and the
phase trajectories of the system, as shown in Fig. 3. We
can see that the switched system is stable under designed
MDADT switching signal.

V.CONCLUSION

In this paper, stability analysis was investigated for a
class of switched systems with multiple time-varying
delays. By using, the MDLF approach and using MDADT
switching regime, sufficient conditions in the form of
LMIs have been proposed to guarantee the exponential
stability of the switched system with the existence of
unstable subsystems, which offers a tighter dwell time-
bound with less conservativeness. Finally, two examples
were given to illustrate the effectiveness of the obtained
theoretical results, and to clarify the differences with other
works the proposed method was compared with the
existing methods. The comparison showed that a tighter
bound of dwell time, can be achieved with the proposed
me

States of the Closed-loop System

70 T T T T

N ow Ao
S S o
T

S

States Responses

p— — | 1 1

T T T T T

0 5 10 15 20

Phase Trajectories of the Closed-loop System

x2(t)

40

60 L L L L L L L
-30 20 -10 0 10 20 30 40 50
x1(t)

25 30 35 40 45 50
Sample Time/s

Designed MDADT Switching Signal

System Mode

0 5 10 15 20 25 30 35 40 45 50
Sample Time/s

Fig. 3. States of the system for x(8) = (10 20)", and convergent phase trajectories for different initial conditions of the system with

designed MDADT switching signal.
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