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Abstract- The extended Kalman filter (EKF) is a widely
used algorithm for nonlinear estimation of Inertial
Navigation Systems (INS) and the Global Position System
(GPS) integration. However, EKF has several limitations,
such as linearization dependency, and the model error
statistics are assumed as a zero-mean Gaussian noise with
known covariance. Consequently, if EKF is not tuned
correctly, the INS error predictions can quickly diverge.

To overcome the limitations of existing Kalman
algorithms, this paper derives a real-time predictive
approach. The proposed method increases the accuracy and
the reliability requirements of loosely INS/GPS integration
by estimating the unknown model errors of sensors without
augmenting the state space. Also, considering the
insufficiency of the researches on the integrated navigation
in tangent (launch) frame, this research derives the
navigation equations in tangent frame and its error model
is analyzed. The estimation performance of the predictive
approach is analyzed.

The performance is verified using an experimental data
acquired from a land-vehicle test. The results of predictive
filter demonstrate superior performance to the traditional
EKF. The test results of land-vehicle navigation validate the
advantages of the presented method, which increases the
position accuracy by an amount of 70% and it decreases the
computational cost to 50% and improves the estimation
performance for the integrated INS/GPS better than the
traditional EKF. This test is a fundamental step to
determine the capability of the filter for robotics and
aerospace applications in future.

Keywords: Extended Kalman filter, Incremental
predictive filter, INS/GPS, Land-vehicle test, Tangent
frame.

I INTRODUCTION

O interpret the necessity of the new predictive

filtering method for integrated INS/GPS, this section
reviews the state of the art of INS/GNSS integration

regarding the principles of inertial navigation and the
most common estimation methods for inertial navigation.
With the rapid development of strap-down inertial
navigation systems based on micro-electro-mechanical
systems (MEMS) technology, as well as the regular
improvement of the global navigation satellite system
(GNSS), the INS combines with the GNSS to improve
the precision of navigation systems [1]. The integrated
navigation systems are used in different navigation
applications, such as land vehicle navigation
applications, robotics [2], missiles guidance [3-5], and
reconnaissance aircraft. The INS/GPS integration has
many designs [6-11], that depends on the application’s
nature which uses the integrated navigation [12]. This
variety of solutions comes actually from the architecture
of the integration [13]. There are three main architectures
of INS/GPS integration, namely loosely, tightly and
ultra-tightly couplings [7, 10, 14]. The loosely
architecture is the more common integration techniques
[7]. In the loosely-coupled architecture the GPS solution
(position and velocity) is merged with the inertial based
information to obtain the final output of the integrated
system.

Traditionally, the outputs from INS sensors and GPS are
combined using the EKF [15] or other alternative KF
algorithms [16]; to produce the best estimate of the actual
vehicle states. Recently, there exist several classes of
research concerning INS/GPS filtering methods for
integrated navigation. The filtering methods can be
categorized as follows: the minimum mean-square error
(MMSE) based methods, such as the extended Kalman
filter (EKF) [17], the sampling-based methods, such as
the unscented Kalman filter (UKF) [9]and particle filters
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(PF) [18], the artificial intelligence methods (Al) [19],
such as the artificial neural networks or the adaptive
neuro-fuzzy inference systems (ANFIS) [20], and the
predictive filtering or model predictive filtering (MPF)
[21] to track measurement output by using prediction
output to estimate model error of the system. Also, there
are some recent researches use the adaptive Kalman filter
(AKF) for INS/GPS integration [22, 23]. The AKF
adjusts the value of the noise covariance matrices for the
system (Q) and measurement (R) only, therefore, the
AKEF is not robust to model error.

The extended KF plays the principal role in estimation
and navigation software design and it has been widely
applied in navigation applications [24-26]. However,
EKF assume that true system model is known with
certainty and EKF uses the Taylor series expansion on
the nonlinear system equations and takes the first-order
terms to provide a suitable solution to some extent with
nonlinearities. Therefore, the EKF is not optimal filter (as
KF) for solving the problem of nonlinear system state
estimation and cannot guarantee the estimation stability.
Compared with other nonlinear filter methods,
predicative filter can estimate model error, so it has
developed rapidly [27-29]. The applications of the MPF
have been reported in various fields such as navigation,
attitude determination[30, 31]. The conventional
predictive filter, due to the use of Lie derivatives in its
formulation [32], has a very complex mathematical
algorithm. Its complexity makes the design of the
predictive filter a very time-consuming and inflexible
process [33].

The main objective of this research is optimizing the
estimation procedure of the INS/GPS integrated system
by replacing the conventional EKF formulation of the
integration by an incremental predictive one. The new
real-time algorithm named generalized incremental
predictive Kalman filter (GIP_KF) is superior to the EKF
as it provides a means to accommodate irregular
situation. This enhances the reliability and accuracy of
the integrated INS/GPS in kinematic applications. To
achieve the goal of this research, verification of the
proposed algorithm is performed in tangent frame both
by using real navigation data for ground vehicle. A
thorough analysis is carried out to show the effectiveness
and suitability of the predictive technique. It is shown
that the GIP_KF is outperforms the EKF and it has
potential for navigation applications requiring high
reliability and accuracy.

The remainder of this paper is structured as follows:
Section 2 presents the derivation of INS/GPS
mechanization in tangent frame. Section 3 covers the
predictive filtering theory and implementation for
INS/GPS integrated system. The equivalent model error
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is derived for INS systems, and then the derivation of the
incremental predictive filter is given in details. Section 4
explores a comparative INS/GPS integration using
GIP_KF and EKF. Also, it provides the results of the
experimental testes. Finally, section 5 summarizes the
work done in this research and concludes the major
results and findings.

I1. INS/GPS INTEGRATION IN TANGENT FRAME

The tangent frame (t-frame) is considered stationary
relative to the center of the rotating earth since the origin
of coordinates does not move with the vehicle but rather
remains fixed at the point of initialization (at start time
t0). In this case, while the IMU moves with the vehicle,
its orientation relative to the earth remains fixed at its
initial value (see Fig. 1). Therefore, this frame is a good
reference frame to navigation calculations.

1 Zi = Ze

Fig. 1. The tangent frame, Body Frame Geodetic, ECEF, and
local NED coordinate systems for terrestrial vehicle

The t-frame takes advantage of the fact that constant IMU
rates can be precisely determined at start-up. t-frame is
usually employed when the travelled distance is limited.
The tangent frame is also known as the launch point
inertial frame (LPI) [34], or launch-centered earth-fixed
(LCEF) frame [35-38]. Some kinds of literature confused
between the local-level frame and tangent frame, for
example, [39] define the I-frame as the tangent plane
reference system. So our tangent frame definition differs
from [39]. In this paper the tangent frame is identical to
the tangent plane coordinates that is defined in reference
[40].

In this section, the INS navigation equations are resolved
in the tangent frame. Firstly, The GPS solution,
expressed in earth geodetic, is converted to the tangent
frame to achieve compatibility between the GPS and INS
data. Hence, the required coordinate systems conversions
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are presented. Secondly, the inertial navigation algorithm
is expressed relative to the tangent frame; the attitude
algorithm uses the quaternions approach, then, the
velocity/position algorithm is achieved.

A. Transformation position and velocity vectors from
geodetic frame to tangent frame

Transformation position and velocity vectors from
geodetic frame to tangent frame

The GPS output is defined in the geodetic frame (g-
frame) in terms of longitude, latitude, and height (or
altitude). g-frame is a coordinate frame fixed to the
earth’s surface, based on the WGS 84 ellipsoid model.
The position vector transformation from the geodetic
system to the ECEF coordinate system is an intermediate
step in converting the GPS position measurement to the
local NED coordinate system or navigation frame (n-
frame). The n-frame is based on the local horizon and its
origin coincides with sensor frame. Given a point in the

geodetic system, sayr; :[(p/Ih]T, then GPS

coordinates can be converted into ECEF frame using the
following equations [3]:
X (N +h)cosgpcos A

e
e

r,=|Ye |=| (N +h)cosesini (D)
z, [N (1-e®)+h]sinA

Since the origins of the e-frame and the n-frame are not
identical, only difference vectors are converted. Then,

Xn Xe Xe,O

n n (e e n

rg =Y, :Ce (rg _rgo):Ce Ye |~ ye,O (2)
Zn Ze Ze,O

Where, the vector r; is the position of the origin of the
local NED frame.
Xe o (N, +h,)coseg, cos 4,
Iy, =| Yeo |=| (Ng+ho)cosg,sin 4, (3)
Z,o | |INo@-e?)+h,]sin 4,
C, is the rotation matrix from the ECEF frame to the
local NED frame, which is given by

—sing,cos4, —sing,sind, Ccosg,
C.=| =-sinj, Cos 4, 0 4)
—CO0S@,COSA, —COS@,sind, —sing,

The parameters 4, and ¢, are the geodetic longitude and
latitude corresponding to r, ,. On another hand, because

the origin of the initial starting point for n-frame and n-
frame are separated (not same), the transformation matrix

C,° from n-frame to no-frame can be approximated to the
following relation:
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1 (A-%)S,, -(o-a)
Cr=|~(2-4%)S,, 1 ~(2-%)C, | )
(p-@) (2-4)C, 1

The transformation matrix C‘no from nO-frame to t-frame

is given as follows.

cosAz, 0 -sinAz, |1 0 O
C,=| 0 1 0 0 0 -1
sinAz, 0 cosAz, ||[0 1 O
cosAz, -sinAz, O ©
= 0 0 -1
sinAz, cosAz, O

Where, the angle Az, is the vehicle azimuth at initial
time t0. Therefore,

r, =C, CrCl(rg —r; )=C,Cl(r; —15.) (7
where,
Cyy Cp Cis
C.=|-(p-%) -(4-4)C, -1
-y, Cyy Cas
€ =Cpy, +(2=%)S,,S s,
Cio =S, +(4-4)S,Co, ®)

Ciz = _(¢_¢o )CAZ0 +()“_/10)C¢DSA10

Cy3 = _(¢_¢0)3Az0 _(ﬂ'_;to)C%CAzD

The GPS gives the velocity of the carrier observed on the
earth frame, which is different from the velocity observed
in the tangent frame. The relations between them are
derived in the following equations:

Vi =V, + 0, X1y =V, 9)

The vector o, is angular rate of the body (vehicle) frame
relative to the t-frame, resolved in the body v' = C{v*.
Because V' is the velocity of the vehicle relative to the

tangent frame, then equation (9) is the velocity correction
formula, written in the form of components in the tangent
coordinate system. Having explained the coordinate
system, the next step is to represent the vehicle system
relative to these frames. Note that the gyro data need to
be integrated only once for determining the
transformation matrixC;, but the (transformed)
accelerometer measurements have to be integrated twice
for position determination. These integrations lead to the
accumulation of measurement errors over time
experienced in every type of INS.
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B. Navigation Equations in tangent frame

The inertial navigation equations are a set of differential
equations, which relates the inertial quantities measured
within the inertial frame to the navigation quantities in
the t-frame.

1. Attitude Equations with Quaternion Algorithm

The quaternion differential equation provides a relation
between the input angular rates and the attitude
quaternion and it can be expressed in matrix form

L1 1

G =70, ®lg=-[a®]e (10)
where ® represents the quaternion product between two
quaternions as in [52], andw, =[0,m, ,0, o, ]T is the

quaternion form of the angular rate (vector in three-
dimensional space can be regarded as a quaternion with
zero scalar). To solve equation (10), a similar method to
that used in the DCM can be applied. That is applying the
integration factor method, using the rotation vector for
the angle integration during the update interval.
Therefore,

qt) = [(cos(o.sAe)l +%§AQ)[AO ®]}q(0) (11)

where | is the matrix form of the unit quaternion, [1 0 0
0], and[A8®]is for the quaternion of the rotation

vector,

0 -A6, —AO, -AG,
AG, 0 AG, -Af,
[a0@]= AG, —A6, 0 A6, 12)
A6, NG, -AO, O

A0, =wdr, AG, =w,dzr, A0, =w,dr
AO = \/(AHX )2 +(A6,)? +(A8,)?

To preserve the normality, the computed quaternion
should be periodically normalized by dividing the

quaternionq(k +1) by its magnitude [q(k +1)|. With the

initial conditions at lift-off, the quaternion parameters

can be propagated using equation (11). As done for the

Euler attitude angles. Using the instantaneous quaternion

parameters, the C; matrix is computed as

C, =

qo2 +q12 'q22 _q32

2(q1q2 +q0q3)
2(q1Q3 'qoqz)

2(q1q3 +qoqz)

2(q3q2 'qoql)
qoz _qlz _q22 +q32
(13)

2(q1q2 'qoqs)
qo2 'qlz +q22 'q32
290, +9,9,)

52

2. Velocity and Position Equations

The t-frame is assumed to be fixed relative to the center
of the earth then, the rate velocity of the earth and t- frame
system is equivalent, therefore:

(Otet =0, = (’)tie :(’)tit (14)
For navigation in t-frame, the gravitational acceleration
thus computed in ECI frame can be transformed to t-

frame, by using the transformation matrix C; as shown
below:

V' =Cf° +¢' -2, xv' (15)
where f° represents the specific force acceleration,
o, =0, =Co, . In summary, the continuous-time
navigation equations in the t-frame are:

=V

V' =Cf’ +g' -2, x V' (16)
&, =, [w, x]~[wix]

where the matrix C, is a direction cosine matrix used to
transform the measured specific force vector to t-frame.
The matrix [ o}, x| is the skew symmetric form of
the body rate relative to t- frame.

o, =0, —C o, (7)
A Dblock diagram representation of the t-frame
mechanization is shown in Fig. 2.

Initial Alignment
Vol

Euler angles to
Quaternions
Quaternions

to Euler angles

Calibration
Parameters

Sensors error

3 Gyroscopes > Compensation

l ot it

r
AT e l teat

3 Accelerometers —» EEaB error C:, it ] -
Compensation L i
Gl

t
v

Calibration
Parameters

G'=CGi(r)

Fig. 2. Navigation computation in t-frame
C. Errors Model in Tangent frame

The errors that require to be estimated include
misalignment attitude, position errors, velocity errors,
and sensor uncertainty errors. They are defined as the
deviations of the computed values from the true values.
The perturbation method is used to linearize the nonlinear
system differential equations. The errors in the position,
velocity and attitude are defined as the estimated quantity
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minus the true quantity as follows:

St =6V
OV =—E'f' 20}, xoV' +C} 5f° +5g' (18)
& =-C o, —[(ntit x]a‘
or
or' U I3 33 or'
SV [=| 0y 2@ x| —[f'x] |loV
.t t
¢ 0s.5 0.5 _|:(°tit X:' ¢ (19)
03><3 O3><3 é‘fb
+ CE) 03><3 |: b :|
S0,
0s.5 _CL

The INS error equation forms a basis to formulate the
indirect filter in this paper, where

, cos(Az ) cos(¢,)
@, sin(p,) (20)
—a, sin(Az,,)cos(¢,)

ot
o, =Co;, =

D. Modified INS Error Equations for IP-EKF

Equations (16) are linearized to obtain a linear state error
model using the perturbations analysis method [28].
Position error, velocity error, and attitude error are
expressed as  follows, or' =r' -, 6V =v' —¥',
Sf° = Af° —Af* | and S, = AG, — A, . Where § is
the error of the corresponding quantity. Using the
perturbations method the state error equation is expressed
via:

ox(t) =F@t)ox@t)+m(t)+wi(t) (21)
The error state vector contains 9 parameters as follows,

ox=[or' ov' & T , Where r' is the position error vector

(m), sV' is the velocity error vector (m/sec) and &' is
the attitude error vector (rad). The vector &' contains the
small-angle between the earth frame and the computed
earth frame. In addition, the vector m(t) is the unknown
model error to be predicted in the proposed incremental
predictive algorithm, and the transition matrix F(t) is
determined as follows:

03><3 |3><3 03><3
F(t)=| 05, —2[o)x] —[fx] (22)
03><3 O3><3 _|:0‘)tit X:|

The 0,_, is the matrix which all its elements are zero, 1, ,
is the unite matrix. Further, [ ' x ] is the skew-symmetric

matrix form of f'=C.f"; the input specific force
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acceleration in the t-frame. The matrix [mti[ x} is the

skew-symmetric matrix form of ®, , the earth rate

resolved in the t-frame. To formulate the discrete GIP-
KF, it is necessary to express (21) in discrete form.
Therefore,

OX, 4 =R oX, +m, +w, (23)
where the vector X, is the state error at time k, m, is
the model error vector, w, is additive system noise, and
F, is the state error transition matrix. For small time
interval (dt =t,,, —t, ), the matrix F, is expressed in
term of F(t) as follows: F, =exp(F(t)dt) = | + F(t)dt .
It is evident that the cost function (32) is well posed
because it uses the unknown incremental model error

Arh, rather than rh, with nonzero mean. The proposed
cost function is unbiased with oy, , =Y, ,and
A, =0.

At t,_, equation (23) gives ox, =F _0X,_, +m,_ +W,
and by subtraction this equation from equation (23),
incremental form of the error model is obtained by
A(OX, ;) =F 0%, —F, 0%, , +Am, +Aw, ,

where Aw, =w, —W,_;,A(0X,;) = 6X,,; —IX, ,and
Am, =m, —m, , . Therefore,

0X, ., =(1+F)ox, —F 0%, , +Am, +Aw, (24)
Equation (24) contains the model error changes
(increments) Am, . The term Ain (24) indicates to

presence of integrals in the system. This eliminates the
static error in the estimate. In (24), future state error (at
t, ., ) is predicted according to state error at the moments
t,and t, ,. The measurement model observes the

differences of estimated position and velocity error
between INS and GPS. The observation equation for the
GIP-KF algorithm is written as follows:

OYiy = HOX  + Vi (25)
where the vector error Jy,,, express the vector
measurement at time t, , . The vector 6x,, is the state

error. The measurement noise Vv, ,,is Gaussian white

noises with zero mean and covariance matrix R, ;. The

measurement matrix H is as follows:

H _ |: |3><3 03x3 03><3:| (26)
03><3 |3><3 03><3

It is assumed that, the process noise Aw, and

measurement noisev, ,, are uncorrelated, zero-mean
white-noise processes with known symmetric positive
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semi-definite  covariance  matricesQ,, andR, , ;,
respectively. The initial random state error, oX,has a
mean oX,and covariance matrix P,. Therefore, the
optimal estimate of the state error ox, ., which is
denoted by 6%, ,,, that minimizes the expectation of the

squared-error cost function E (|5, ., — 6%, ., °). The

solution is the following predicted state error:
0%y = (1+F )% —F, 0%, + A,

6Y\can = HOX
where the  vector 5% e R™, 5§ e R™, A e R™

FeR™ ,andH e R™™". In (27), the proposed filter uses
both current and previous states. The unknown model
error input Arh, is predicted using the proposed approach

as described in the next section.

(@7)

I11. PROPOSED FILTERING ALGORITHMS DERIVATION

This section demonstrates the strategy of the GIP_KF
algorithm to estimate the unknown model error rh, . The
incremental form of the state space that is modelled in
equation (23) can be written as follows:

AR, . = AF AR, +AmM, (28)
where AR, e = 0K —OX, AKX, =X, —0K, 4,
A, =, -, , and AR, =F, —F, . By writing this
form we can get the model error signal changes Am, . In

fact, when we add A to the above equations, it means
adding integrals to the system. This eliminates the static
error in the estimate. By combining the above equations,
the equation one step ahead is obtained as follows:
)A(k Kk I+ F ))A(k -k —1)A(k 1 +Amk (29)
where 1 is the unit matrix. In this equation, states are
calculated in moment k+1 according to moments k and k-
1. The minus sign of this relation is actually a kind of
derivation of states in this method. The prediction of
system outputs can be stated as the following compact
equation:
Yian =Hea(1+F)X —H F X, +H A, (30)

where X, A e R™ ,y e R™ FeR™ andH e R™" .

Equation (30) can be rewritten as follows:
Y = Hl)A(k - Hz)A(k at H3Amk (3D
where,H, =H, ,(I1+F ),H,=H, ,F ;andH,=H, ;.

A. Definition and minimization of the cost function

To achieve the optimal solution of Arh, , a cost
function consisting of the measurement residual term and
the model error increment term is defined as follows:

. NT N oT i s
TAPJ:(YM_YM) RLl(qu_ym)"'AmLRkAmk (32)

where vy, ,, is output reference at time k+1, the positive

semi  definite matricesR; and R} ,are  weighting
matrices of reference tracking error and increment input
moves. These matrices are the filter tuning parameters.
When R} decreases, more model error is added to correct
the model, so that the estimates more closely follow the
measurements. When R}" increases, less model error is
added, then the estimates more closely follow the
propagated model. Finding optimal increment input
which minimizes quadratic cost function (32) represents
optimization problem, in the case when there are no
constraints, the optimal increment input can be found as
an analytic solution as follows:
Am; = KEIPKF (yk a7 Hl),\(k + szk -1) (33)
where the gain of GIP_KEF filter is:
KEIPKF = (H:'I; REJAHS + ka )71 H-I(; Rgﬂ (yk+1 - Hl)’\(k + HZ)A(k—I)
(34)
As shown in equations (29) and (34), the proposed
filter uses both current and previous states rather than the
current state to predict the unknown model error input

and the current and previous states create the weighted
difference term in the optimal solution of the model error.

B. GIP-KF Prediction and correction loop

The optimal increment model error is calculated from
equation (29). The predicted error state estimate at stage

k+1, given the measurements up to stage k+1, can be
given by:

X = (+F)X —F X, +Am,
yk = Hk+1)A(k +1/k (35)
P k= F Py FkT +Qk

-1
K1 = P Hia [Hk+1pk+1/k HL. + Rk+1j|

)A(k 1= )A(k an T Kk+1 [Yk +1 _yk +1] (36)
Pk+1 =1 _Kk+1Hk+1]Pk+1/k

where K, ,is the Kalman gain, which defines the

updating weight between new measurements and
predictions from the system dynamic model. The

innovation sequence is defined as[y,, -¥,.,|. Equations

(32) through (34), present the GIP-KF method of
estimating the incremental model error and the
perturbation part of the state. The algorithm has
automatic repair statistical characteristics of model error
that improve filtering precision. After applying the first
model error move of optimal sequence to system, new
output is measured and new optimal model error
sequence A, is computed. The simplified GIPKF

framework algorithm is illustrated in Fig. 3.
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GIP_KF
/2

Model Error Prediction

Cost Function Amk
Optimization

Y

Time Update J

A 4

State Error Estimation

Navigation Errors
Parameters

> Measurement Update >

<>
®

-

IMU <

Model Error Compensating

Navigation
Equations

Fig. 3. The simplified GIP_KF framework algorithm for INS/GPS
integration

IV. SIMULATION RESULTS

In this section, a real car test for the verification of the
performance of the GIP_KF proposed in the research will
be investigated. The prototype of a real-time integrated
system consists of an IMU type AIDS16488A which is
integrated with a GPS receiver type GARMAIN, and an
on-board computer. Fig. 4 shows the hardware that are
used in the test, in order to implement the navigation
equations.

©
Fig. 4. The hardware adopted in the experiment

A. Analysis of the results

The performance is analyzed during GPS outages
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using the values of the estimated navigation parameters
(..., position, velocity, attitude, ...) of the proposed IPKF
method and the extended Kalman filter. The robustness
of the navigation system during GPS outages is tested
with three duration of GPS outages of 10, 11, and 22
seconds as is illustrated in Fig. 5.

200

\ Ocrs  Tue O s point]

] M
_ 07@:‘1‘ outa:: oo |

Outage 2~ A0

~
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Fig. 5. The tested trajectory

Fig. 6 shows a significant reduction in position error
growth during the GPS outages when the proposed filter
is used. This figure indicates that the estimated positions
by EKF are increased rapidly when the GPS signal is not
available. According to the above results of the
trajectory, the filtering accuracy of the GIP-KF is better
than that of the EKF. When the GPS has an outage, the
EKF immediately diverges. This proves that when an
outage occurs, compared with the EKF, the IP-EKF has
strong robustness, and it predicts the model error in each
time step. In this case, the proposed filter has higher
accuracy for INS/GPS online correction when the model
error is unknown.

[+ Gps

500 Tie — GIPKF —EKF 0 Start poirt| /»
400
300
€ 20
100 — -
100 E— = i
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Fig. 6. The estimated trajectory by GIP-KF and EKF

In Fig. 7, it can be seen that IP-EKF results are more
accurate than the extended Kalman filtering for position
errors of horizontal plane. The EKF gives an error
magnitude of about 455 m, after 22 sec (outage 3), while
the error magnitude of the proposed filter is around 82 m,
after 22 sec (outage 3). The EKF estimation performance
in both horizontal directions is highly degraded
compared to the GIP-KF estimation performance during
the third GPS outage. Fig. 7 shows about 80% reduction
in position errors during GPS outages in the case of using
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Fig. 7. The estimated horizontal (x and z) position for the tested
trajectory by GIP-KF and EKF

The horizontal navigation errors and vehicle trajectory
in terms of the root mean square error (RMSE) and the
mean error of vertical axis are given in Table.2. The
calculated RMSE for the horizontal errors and the mean
vertical error demonstrate good performance of the
proposed filter relative to the tradition EKF (15 states).

TABLE |
THE HORIZONTAL NAVIGATION ERRORS
RMS of horizontal position error
(m)
Algorithm IP-EKF EKF
Zzzzlgzr:jectory with 3 15.15 79.63

The case when observing the linear velocities of
vehicle from IP-EKF and EKF are also shown in Fig. 8.
The comparison of the results shows that in the case of
IP-EKF, the velocity error growth during the GPS outage
is decreased.

It is clear from the previous figures that the IP-EKF
approach is more accurate and robust than the traditional
EKF witch not converge rapidly after the long GPS
outage (the third case when the GPS is blocked for 22
sec.), while the new filter converges to the true velocities
more rapidly.

in the navigation system has a direct influence on the
overall system’s performance. The sensors model error
information play an equivalent role in the estimation of
the vehicle state. It is clear, that navigation system
performance is enhanced by compensating for model
error in real-time. Fig. 9 shows the estimated biases for
the accelerometers and the gyroscopes using GIP-KF and
EKF.
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Fig. 9. The estimated biases for the accelerometers (a) and
gyroscopes (b) by IP-EKF and EKF


http://dx.doi.org/10.52547/jocee.1.1.49
http://jocee.kntu.ac.ir/article-1-35-en.html

[ Downloaded from jocee.kntu.ac.ir on 2025-10-20 ]

[ DOI: 10.52547/jocee.1.1.49 |

Journal of Control (English Edition), VOL. 01, NO. 01, July. 2022

Fig. 10 presents the estimated attitude for IP-EKF
and EKEF; the results show that the GPS outages not
influence the attitude estimate.
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Fig. 10. The estimated attitude by IP-EKF and EKF

In this section, the GIP-KF was validated during a real
experiment for the INS/GPS integrated navigation and
with simulation of a car test, which demonstrates the
effectiveness of the proposed GIP-KF in terms of
positioning accuracy compared to the EKF.

B. Analysis of the performance of the proposed method

The validity of the proposed filter is verified using
loosely coupled MEMS INS/GPS experimental data. To
realizes and analyze the performance of the proposed
approach, the IP-EKF is compared to EKF. The
integration algorithm uses an augmented model of EKF
with 15 states and IP-EKF with only 9 states. The results
demonstrate that the new filter is more robust to GPS
outages than EKF. The paper implements the
approximate calculations of the number of floating-point
operations per second (FLOPS) performed for a given
algorithm. As a result, 30800 FLOPS are needed in each
cycle, of EKF algorithm, while GIP-KF requires only
15050 FLOPS. Therefore, the GIP_KF decreases the
computational cost to 50% and increases the accuracy of
the horizontal position error by an amount of 81%
comparing to EKF. Also, it improves the speed of
estimation convergence comparing to EKF. Therefore,
IP-EKF can be used in real-time, with high reliability and
accuracy.

V. CONCLUSIONS

This paper presents a novel incremental predictive
approach to increase the performance of the extended
Kalman filter for integrated INS/GPS when the GPS is
blocked. Since the performance of the combined
INS/GPS degrades during the GPS outage because of the
remarkable model error of the MEMS-IMU, the
conventional EKF may become unstable, and its
convergence is not confirmed. Further, the degree of
observability of some error states is inadequate due to the
state's augmentation. The proposed algorithm predicts
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and compensates for the unknown model error of sensors
by minimizing a quadratic cost function consisting of a
measurement innovation and the incremental model error
term.

The research demonstrates formulation, the
deterministic ~ full  observability, stability, and
convergence of the proposed filter. The test results of
land-vehicle navigation validate the advantages of the
presented method, which increases the position accuracy
by an amount of 81% and it decreases the computational
cost to 50% and improves the estimation performance
This test is a for the integrated INS/GPS better than the
traditional EKF.
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