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Abstract— The paper addresses complexity of explicit
model predictive control (MPC) in terms of online
evaluation and memory requirement. Explicit MPC defines
a piecewise affine (PWA) function over different regions of
system state-space. An efficient approach is presented to
integrate both complexity reduction schemes via 1) a
separator function to remove regions defined over control
actions which attain saturated values and 2) elimination of
regions which have symmetry. The proposed method
reduces the conventional necessity of explicit MPC, online
evaluation, and storage requirement, by removing the
regions corresponding to the saturated optimal control
inputs using a simpler replacement function. Moreover, the
method incorporates the concept of symmetries in the
context of MPC quadratic programming problem to
eliminate redundant symmetric regions, leading to devising
a novel solution algorithm with much less complexities for
embedded applications. The presented method also
simplifies the symmetry identification process because the
symmetry search algorithm is performed only for regions
on which control action is unsaturated rather than the
whole original regions. Various simulation tests are
conducted to comparatively demonstrate effectiveness of
the proposed algorithm for an inexpensive implementation
of large-order systems in terms of the required storage and
number of floating point operations.

Keywords:  Explicit MPC, quadratic programing,
symmetric regions, and saturated regions.

I.INTRODUCTION
ODEL predictive control is a dynamic optimization
policy which is able to optimize performance in
constrained multivariable systems [1], [2]. The
optimization problem can be transformed to the form of

a multi-parametric quadratic programming (mp-QP)
problem. The problem is treated as a receding horizon
fashion in which the mp-QP problem is solved online and
only the first control input is then applied to the
controlled system at each sampling instance [3], [4].
The ability to solve the mp-QP problem in embedded
applications often poses a crucial issue where sampling
period is small and storage limitation exists. In [5], an
explicit solution of the mp-QP problem has been
provided in offline manner in terms of a piecewise affine
(PWA) function defined over a set of polytopic regions.
The solution maps the current state measurement to the
optimal control input. Therefore, online solution of the
mp-QP problem is simplified to a PWA function
evaluation which is fast and simple for embedded
applications. However, the predefined explicit solution
can be prohibitive as the number of polyhedral regions of

u*(x)might grow exponentially with the number of
constraints arising in the MPC optimization problem [6],

[7].

Implementation of explicit MPC consisting of large
number of linear control actions and their associated
regions might be too expensive due to probable necessity
of increasing the storage requirement [7], [8], [9].
Therefore, it is important to keep the number of control
regions as low as possible. For this purpose, numerous
studies have shown that simplifying the representation of
the PWA function can be carried out to approximate
explicit MPC by a simpler function [6], [7], [8], [9], [10].
For example, artificial neural networks [6], [7] are used
to represent the explicit solution of the MPC problem.
Nevertheless, the use of the techniques is challenging
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because stability guarantees and maximal performance
have to be taken into account for all feasible states x [6],
[7], [10], [11]. Hence, one way to avoid the challenges is
to look for approaches which offer equivalent
representations of the PWA function with no implication
on feedback optimality rather than the approximate
representations. An efficient method has been proposed
in [12], [13] where an equivalent simple affine function
has been employed to remove the regions whose
associated control laws attain a saturated value, leading
to significant reduction in the storage requirement. In
another proposed approach [14], [15], symmetries of the
MPC problem have been computed as a mathematical
problem in order to reduce inherent complexity of
explicit MPC with no change on optimality of the
original representation. ldentification of the set of all
controller symmetries plays an important role in
efficiency of the method of eliminating the symmetric
regions [14]. To identify these controller symmetries,
however, [15], [16] has shown the fact that the
symmetries corresponding to control regions can be
identified by using graph theory. For this objective, it is
shown that the problem of finding controller symmetries
is converted to graph automorphism problem which can
easily be solved by the standard graph automorphism
software packages [17], [19].

In this paper, an equivalent function (" (x)is

introduced to avoid storage of many regions, called
saturated regions, where their optimal control actions
attain a saturated value. This interesting feature together
with the concept of symmetries will be integrated in an
MPC problem context to devise a novel solution
algorithm for embedded applications. As the saturated
regions are eliminated, the symmetric identification
process is conducted only for regions whose control laws
are not saturated so that precomputing the explicit MPC
symmetry becomes less expensive. Moreover, the
proposed algorithm offers an equivalent simpler function
which guarantees the stability and control performance
remain unchanged because the replacement function has
no implication on optimality of the original function. The
resulted algorithm simplifies the inherent complexities
rooted in i) identification of controller symmetries and ii)
the required look-up for all control actions and their
corresponding regions, leading to an efficient explicit
MPC implementation with much less complexity for
large systems in which explicit MPC solution has a large
number of regions. The main merit of this new algorithm
can clearly be observed in extensive computational case
studies, which shows the proposed approach is more
efficient and general than the existing methods.
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Il. THEORETICAL BACKGROUND

A. Explicit Model Predictive Control

Throughout the paper, a class of discrete-time linear
time-invariant (LTI) systems with the following structure
will be considered for open-loop processes:

X" = Ax+Bu
y =Cx @)

in which x e R" indicates the state vector, u e R™ is the

vector of system inputs, and x* denotes the state at the
next sampling instant. The overall goal is to construct a
simple state feedback controller in the context of MPC
controller in order to solve the following constrained
optimal control problem:

N-1 N
LT T T
J(x)=min xyQyXy +Z:xk QX +Zuk Ru,
U (22)
k=0 k=L
subject to Xiep = AX + Buy
Xmin < Xy < Xmax
Unin < Uy < Upax (Zb)

AUpin < AU, < Aoy

ymin < yk < ymax
where x, and u, denote, respectively, state trajectory
and input sequence over finite horizons N and Nc, given

the initial state X . It is assumed thatQ , QyandR

represent the penalty matrices which are, respectively,
positive semi-definite, positive semi-definite and
positive definite. Note that the preceding assumption
implies that (2) is strictly a convex QP problem. The
receding horizon MPC feedback then becomes

u"(x)=[10..0U"°, where the optimal vector

U*::[ug ,...,u{,_lJT can be found by solving (2) as a QP

problem for a given value of the initial condition x,. It

should be mentioned that penalty can be imposed on Au
in (2a). In this case, (2) can be still translated into a QP
problem [20].

One of the drawbacks of the MPC controller is the
need to solve the QP problem in (2) online, which has
traditionally made MPC as a control methodology for
slow processes. As discussed in [5], an alternative
approach to solve the QP problem (2) online with the
initial state X, , is to conduct an offline computation of (2)
as a parametric quadratic program (pQP) and then take
U”explicitly as a piecewise affine and continuous
function with the initial state in the following form:
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Fx+G, if xeR

u”(x)= (3)

F.x+G, If xe Ry

where FeR™" and G;eR™ are, respectively, real
matrices and vectors of the MPC controller. R;,
i=1...,n, are critical regions, and n, denotes the total
number of critical region. The triple (F;G;;R;) is called

i 1
the i-th controller piece. In this way, the explicit
representation provides a simple implementation which
includes a mere evaluation of piecewise affine function
for a given x, at each sampling time.

B. Complexity Reduction via Elimination of the
Saturated Regions

The complexity of an explicit MPC problem solution
is depended on the number of regions to be stored. As
already mentioned, in any typical explicit representation
of (3), there exists many regions corresponding to the

control actions which can attain either u;,or u,, for
(2b). Therefore, (3) can be rewritten as follows [13]:
Fix+G; if XeRnsat
U (%) =1 Uy if XeRy 4)
Unin if xe Bsat .
As a consequence, the regions R;, i=1,...,n,can be

sorted into three different types of Ryears Rear @nd Ry,

denoting the regions in which their corresponding control
inputs attain, respectively, unsaturated, maximal and
minimal saturated values. That is, if x € R,o;; then F
and G; can be nonzero and:
if xeRy, then F, =0andG, =u
if xeRg, then K, =0andG; =u, .
The triple (F;G;;R €R,,) is called the unsaturated
controller piece.
Theorem 1 [12]: Given a function " as:

max

if XeRnsa
FEx+G .

& ()=] g if X & Rynar » B(X)>0, (5)
u. if X R, A(X)<0
such that " (x)=u"(x) for all X belonging to the
domain of u”(x), i.e. xe dom(u*) ,where #:R" >R
is a function defined as:

B(x)>0,

B(x)<0,

if X e Ry,

(6)

if XeRgy.

39

Proof: Ref. [12] has shown how to find the separator
B(X) such that (6) is satisfied.

Therefore, to find the regions on which query state x,

lies and subsequently their corresponding control inputs,
sequential search is first done through the regions of
Runsat - Then, if x e Ri < Rpeat » the control input will be

Fx+G;, otherwise the control input is determined by
sign of the separator function £ which will constantly be
equal to U, Oruy,. Thus, instead of storing all

regions, only unsaturated regions and separator function
are needed, leading to complexity reductions in online
computation burden and required memory. It should be
mentioned that the original function (3) and the
replacement function (5) are definitely equivalent such
that the two functions result in the same control action for
the same initial conditions. For this reason, the stability
and control performance remain unchanged.

C. Complexity Reduction Via Elimination Of The
Saturated Regions

In the previous subsection, many regions with
identical properties, corresponding to the saturated

regions ( Ry, and Ry, ), are removed in order to reduce

the complexity. However, the number of remaining
unsaturated regions (R, ) and its ratio to the total

number of regions should be considered as an important
issue to be investigated as well.

This subsection addresses the existence of symmetry
in the unsaturated regions and their corresponding
control actions. Then, the complexity reduction on which
elimination of the symmetric regions has ultimate
impacts are investigated.

Definition 1 [14]: The pair of invertible matrices
(©,Q) is a symmetry of the piecewise affine control law

in (3) if there existsi and j such that:

OF =F,0

Therefore, such transformation matrices (®,Q) map
the i -th region R; and the corresponding control law F,

and G; , respectively, to the j -th region R; and the
corresponding F; and G;.

Definition 2 [14]: If there exists a pair of invertible
matrices (®, Q) such that (1) and (2) are preserved:
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®T QN 0= QN
©'Qe=Q
Q'RQ=R
OA=A®
©B =B6
and the transformation does not violate the following
constraints:
Xpmin < ®Xk < Xmax
Upin < Quk < umax (9)
Ymin < C®Xk < Ymax -
the set of all pairs (®, ) denoted by Aut(u”) is called a
group.
Definition 3 [21]: A permutation of a finite set S isa
bijection from S to itself, i.e. bijection «:S — S.

To identify the controller symmetries, (9) is first
transformed to the following form:

®)

Gyx<1
Gu<1
where G, and G, denote the normalized half-space

matrices.

Theorem 2 [14]: Given the following equations which
imply the transformation definition, have being
introduced in (8):

(10)

PXGXA(GXTGX)&GXT -G,A(G,/G,) G,
RG,B(G, G,) G, _GXB(GXTGX)fl G, P,
1

e Tex)‘le (11)

and if there exists the set of permutation matrices

{(le, Pul),--.,(er, Pur)} such that the relations in (11)
are satisfied using (Pxi , Pui ) i=1 ..., r,the symmetry

group {(@1,Q1),...,(®r,Qr)}eAut(MPC) can then be

40

attained as follows:

©; =(G, G '6,TRG,

1 _ (12)
o =(6,'6,) G,R'G,
Proof: See [14].

The relations in (11), being taken as a graph
automorphism problem, can be solved by the standard
graph automorphism software packages [19] and
identification of the symmetries can then be performed
efficiently using (12). However, the explicit solution of
(3) has almost more symmetries than the MPC problem
in (2) [14]. Therefore, the following theorem can be
considered for this purpose.

J
Theorem 3 [14]: Let {xj}H be the extreme points of
.. n . x )9 .
the partitions {R; |.", . At the extreme points, {u j}. is
B J

v d

calculated. Assume that {u j}_ has at least a subset
j

which is linearly independent. The linear transformation

matrices (@,Q) is then obtained as follows:

®:XPXT(XXT)_1

(13)
-1
Q=upu’(LUT) ",
where P satisfies the following equations:
-1 -1
pxT (xxT) X =XT (xxT) XP
(14)

pUT (UUT)_lU —u’ (UUT)_1UP,
where X =[x,...,X; JeR™ and U =[u,...,u; JeR™".

The set of matrices {(@l,Ql),...,(Gr,Qr)} is assumed

to be isomorphic to the set of all permutation matrices
P={R...R}.

Proof: See [14].

The equation (14) can also be considered as a graph
automorphism problem solved by the standard graph
automorphism software packages. This will result in
determination of the set of the transformation matrices

{(©,Q).....(0,,9,)}e Aut(MPC) given in (13). A
procedure for identifying the symmetries of the MPC

problem is organized as Algorithm 1 which summarizes
the above steps.
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Algorithm 1: Identifying the symmetries of MPC
problem

1. Calculation of the set of all permutation matrices
P={R,...R} using the standard graph
automorphism software packages to solve either (14)
or (11).

2. Calculation of the set of transformation pairs
{(©,Q).....(0,,9,)}e Aut(MPC)using either

(13) or (12).

On the other point, removing the saturated regions can
significantly reduce the number of the extreme points and
the subsequent computational complexity of (14). Then,
the symmetry identification problem in (14) is simplified
to only the extreme points corresponding to the
unsaturated regions R, Which are usually less than

n
that of {R;}.", .

The property of symmetry implies that only one of i -
th or j -th region and their corresponding control laws, as
controller pieces of i, j eI, is adequate to be stored and
hence other regions and their corresponding control laws
could be recovered using transformation matrices
(©;,€;) in (7). On the basis of Definitions 2 and 3,
permutatione: 1 — 1,1 ={L...,n }, can be considered

as a function which corresponds to the transformations
being performed using the set of matrices
{(©,Y),...,(0,,€,)}. Therefore, to define a function

that is able to map each transformation pair of the set of
matrices{(®,<Y),...,(®,,€,)}to the corresponding

permutation of controller pieces, the following definition
is given:

Definition 4 [21]: consider 0: Aut(MPC) — | that
maps each transformation pair of the set of matrices
{(©,Y),....,(0,,Q,)}to corresponding permutation
a =0(Aut(MPC)): 1 — | of controller pieces | where

j=a(i) stands for i and j satisfying (7). Therefore, in
the view of symmetry concept, two piecesi, je | are
called equivalent if:

EI(@,Q)E f < Aut(MPC): j :a(i),

where controller piece | is mapped to controller piece
j=a(i) for @ €0(f). The set of all controller pieces,

equivalent to the 1-th piece, is called a controller orbit
[14], being described by:

f(i)={a(i):ae@(f)}.

41

Algorithm 2: Construction of controller orbit

1. Calculation of explicit solution of (3).

2. Identifying the symmetry group f < Aut(MPC) of
(3) using Algorithm 1.

3. Calculation of the controller orbits f (i) of
controller pieces for (3) by identifying the equivalent
pieces.

4. Selecting only the representative controller pieces
(F,G,,R), i f(i) from each controller orbit f (i)

Then, the controller pieces | = {1 nr} of the explicit
solution of (3) are organized into the set of controller
orbits| = {  (i,),... f (i,)}, where{i,,...,i, { includes one

representative controller piece i; from each orbit f (i; )

andt denotes the number of the representative controller
orbits belonging to (3). Therefore, implementation of the
controller orbit requires to select one representative piece
from each orbit, leading to recovering control law of j -

th controller piece by identifying the corresponding
controller orbit and subsequently transformation pair(
®;,0Q;) of the orbit. According to (7), control law of j -

th controller piece will be as follows:

u = QRO X+ QG; (15)
where controller pieces i, j € | create a controller orbit

which its representative controller piece is the i-th
controller piece. Similarly, in (5), R, Can also be

classified into two constituent subsets of Rygqy, and
Rszmm such that RIsymm Y Rszmm = Runsat where Rlsymm
denotes the regions of representative controller pieces
and Ryqmm indicates the pieces which can be recovered
by (©;,Q;) e f < Aut(u”) of corresponding orbit i.e. if

xeR Jsymm then O;xe RIsymm where

(©;,Q) e f < Aut(u”). Therefore,  only
corresponding to Ry, are adequate to be stored.

regions

Algorithm 2 summarizes the process of creating orbit
controller.

D. Complexity Reduction Via Elimination of the
Symmetric and Saturated Regions

Removing saturated regions is not enough to be used
as a general efficient approach to tackle the considered
complexity reduction issue. Therefore, it is more efficient
to accompany it with the symmetric approach, proposing
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Algorithm 3: Searching through the regions Rygmn,

INPUT:
B(X): Rigmm {(©1,1) - (07,2 )€ AUt(U”), Uy,
F,G; which correspond to Rygmm

Unin

OUTPUT :u"(x)

1 if XeRgmmei

2: returni

3: elseif ®;X eRgymm-i
4: return i and j

5 U (x)=2,F0,'x+2G,
6: else

7. if B(x)>0

8: U = Uy

9: else B(x)<0

10 u = Uy,

11: end

12.end

a new integrated method due to tendency of many typical
mathematical QP problems to exhibit large symmetry
groups. On the other hand, a mere deployment of the
symmetric approach is obviously not as effective as
applying the developed integrated approaches for any
candidate QP problem. Then, (5) can be rewritten as:

Fx+G, if Xe RIsymm
if ®:.xeR
QFe x+QG o
L]:ymm (X) = U if xg Runsat » (16)
max ﬂ(X) >0,
if Xé& Rt -
Unin B(x)<0,

where the separator function is first applied to remove the
saturated regions and then the unsaturated regions are
classified into Rigmy and Rygmy under the symmetry
concept as performed for (3) in Algorithm 2, implying
that only regions Rg ., are needed to recover all of the

unsaturated regions.
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To find G, (X) , sequential search is first done
through the regions of Ry, . Therefore
if XeR < Rigmm then g, (x)=Fx+G;,
if © XxeR <Ry thendg,,(x)=QF6, x+QG;,
otherwise, the control input takes u,,,, Or Uy, based on

sign of the separator function 3. Based on the combined

approaches introduced in Subsections 2.2, 2.3, and 2.4,
Algorithm 3 is proposed to efficiently reduce the memory
requirements and complexity for practical applications.

Il COMPLEXITY ANALYSIS

A. Offline computation

The preprocessing computation consists of two steps.
The first step is to determine the closed-form solution of

ﬂ(x) , discussed in [12]. The next step is then to identify
((0,9)....(6,,9,)} eAut(u*) that is very difficult to give
a closed-form solution of its preprocessing complexity.

However, to obtain matrices {(©y,9).....(©,,Q, )}, it
is required first to calculate the extreme points, i.e.

J *J . .
{xj}_ land {u j}_ at these points, and then to determine
1= j

{(01,9)....(0,,9,)] eAut(u*) by the standard
graph automorphism software packages. It should be
noted that a large portion of the computation time to
calculate the extreme points X; € ﬁsat and R, is already
done to determine the separator function and thus the
computationally  demanding  of Aut(u*) can

significantly be reduced.

B. Online Computation

In the worst case, finding a region that includes state
Xo consists of two steps. The first step is to find

(@i,Qi)eAut(u*) that requires an order of

O(rn|Rysy |) time duration where r denotes the
number of wunique pair of invertible matrices
{(@1,91),. (0,9, )} regarding unsaturated controller

pieces and | Ry | is the sum of lengths of all

[Rigymm|

unsaturated controller orbits, i.e. |Ryq = D | f(i)]
i=1

where [ f(i)| is orbit size and |Rymy, | denotes the

number of representative controller pieces of the
unsaturated regions. The second step is to evaluate the
separator function to find its sign which requires much
less computational effort than the first step. Therefore,
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the online computation burden is approximately
O(rn| Ry |) that is not considerably increased by the

evaluation of the separator function. Indeed, removing
many saturated regions comes at the negligible price of

evaluation of polynomial 3(X).

C. Storage Requirement

According to Algorithm 3, the input data must be
stored. Regarding to very low required memory to store
B(X), Upas Upin 0Ny Ry and Aut(u*) is

investigated in this study that is far more than the other
input data to be stored. To compare with the other
approaches, analysis of FandG; is neglected. Then,

Rigyru]
Z hi(n+1) real
i=1
numbers ( h; is the number of half-spaces forming the i -
th region). Also, to store

{(@1,91),...,(®r,£2r)}eAut(u*), the storage of

storing  Rigymm would require

r(n? + m2) real number is required. Therefore, the total
|Rlsymm|
requirement storage is r(n° +m?)+ Z hi(n+1). The
i=1
proposed approach contributes to efficiently reduction of
memory requirement since many regions are removed.
D. Comparison With the Other Algorithms

Many algorithms have been presented in the literature
to reduce the complexity of an explicit MPC problem
solution by reducing the number of regions to be stored,
leading to the subsequent reduction in the required
memory and online complexity computation. The

function u”(x) in (3) has n, regions to be stored and

require at most (’)(nr ) floating point operations (FLOPS)

to be computed online. In [22], M nodes with their
associated pointers are stored and O(log, n, ) FLOPS are

required to be computed online. The approach based on
the elimination of saturated regions scheme [12-13],
|Runsat|

however, requires storing hi(n+1) real numbers

i-1

and has time complexity of O(|Runsat|) FLOPS. The

online complexity and storage requirement of the

approach being introduced in [14], are (9(pnnr)
t

FLOPS anthi(n+1)+ p(n2+m2), respectively,
i=1

where p denotes the number of unique pair of invertible

43

TABLE |
COMPLEXITY OF ALGORITHM 3 VS. OTHER APPROACHES (SYMMETRIC
STATE-SPACE)

Sequential ~ Algorithm  Algorithm  Algorithm
search 3 from [12] from [14]
FLOPS
(worst 4474 628 574 4698
case)
Storage
(real 3357 219 423 1671
numbers)

Fig. 1. Symmetric state space partition: Rggp, R sqr(green), Rypsqae(blue
and red), Rysymm (blue), Rygymm(red)

matrices {(@1,(21),...,(@,,,(2,, )} of all controller pieces
which can be found in (3), respectively. As
|R,Symm| <<l,p<<rand |R,symm| <<|Runsat| < nr

therefore, although our proposed approach can reduce
online complexity, the storage complexity is significantly
reduced.

IV.RESULTS

In this section, we evaluate the performance of the
proposed algorithm.

A. Example 1
Consider the linear system [12]:

X(k+1) :[0.755 0.680 }X(k)J{ 0.825 }u(k)
0.651 -0.902 -0.139

subject to |Xi|£lO,i =12 and |u|£1_
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TABLE Il
COMPLEXITY OF ALGORITHM 3 VS. OTHER APPROACHES (NON-
SYMMETRIC STATE-SPACE)

Sequential ~ Algorithm  Algorithm  Algorithm
search 3 from [12] from [14]
FLOPS
(worst 3635 444 420 3771
case)
Storage
(real 2727 194 313 2061
numbers)

The explicit solution (3) of QP problem (2) with
N =10,Nc=10, Q=Qy =1,,, and R=1 is obtained
using the MPT Toolbox [23]. The explicit solution (4)
consists of 225 regions where |Runsat|=29, |I3sat| =98

and |Ry, [=98.  The  separator  function s

B(X) = =% — X —0.0011x} —~0.254x3 . The saturated

regions Ry, and R, are removed using ﬂ(X) and
moreover many regions of R, are removed using the

symmetric property, being demonstrated graphically in
Fig 1. Furthermore, to identify controller symmetries, it
is sufficient to evaluate only the extreme points of the

unsaturated regions. The symmetry group Aut(u*)

consists of reflection about origin of coordinate system
as follows:

e-([5 5)

According to algorithm 2, |Rye|=29 pieces of the
unsaturated regions are organized into t=15orbits: one
orbit of size |f (i)|=1 and 14 orbits of size |f (i) =2.
Therefore, representative controller piecesr,,  — are

required to be stored which are depicted in Fig. 1.
Therefore, 14 regions of R have been removed

that are redundant symmetry group
(@1,91):Aut(u*). Then, the required total memory is

unsat
under the

1.75 kB, while the original function (3) requires 27 kB
and hence the proposed approach results in a reduction of
storage space by a factor of 15.2. In the worst case, the
online complexity of the original function (3) and the
integrated approach, introduced as algorithm 3, are,
respectively, 4474 FLOPS and 628 FLOPS to attain

u (X) Table 1 presents the comparison between
algorithm 3 and the counterpart methods in terms of the
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Fig. 2. Non-symmetric state space partition: polytopic sets
Rsut= Bsut(green): Runsat(blue and red)7 R]symm (blue)’

RIsymm(red)

required storage and FLOPS in order to compute the
control input.

Next, we assess the Algorithm 3 where the state and
input constraints are not symmetric. The Algorithm 3 is
again applied to the above linear system except for the
constraints which are non-symmetric as-1<u<05 and
-10< xj <5 . The explicit solution (3) is computed using
MPT Toolbox [23]. The solution has a PWA function
with 182 partitions classified by the separator function
B(X) =%~ %, ~0.0011 ~0.254%] @S |R jpene| = 21 +|Reue| =98
and |R 68 shown in Fig 2. The symmetry group

Aut(u*) is as follows:

@a-{[o 3]

According to algorithm 2, |Rye|=21 pieces are

resulted in t=16 orbits: 11 orbits of size |f (|)| =1 and 5

sat |:

orbits of size |f (i)[=2. Finally,‘R,symm‘:m regions,

shown in Fig. 2, need to be stored.

As reported in Table II, the results show that the
proposed algorithm outperforms the sequential algorithm
and algorithms from [12] and [14] regarding processing
time and memory requirements. Therefore, the
Algorithm 3 remains efficient even where all constraints
are not symmetric.

B. Example 2

In this section we apply the Algorithm 3 to the Cessna
Citation 500 aircraft model presented in [20], [24]. It has
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the linearized continuous-time state space model as
follows:

-1.2822 0 0.98 0
4= 0 0 1 0
—5.4293 0 -1.8366 O
L 1282 1282 0 0
-0.3
0
B= —17
[ 0
0 1 00
C = 0 0 0 1],
__6128.2 1282 0 0
D =|o|.
L0

The only input represents the elevator angle (rad), and
the pitch angle (rad), altitude (m) and altitude rate (m/s)
are outputs. Due to the equipment design limitations and
passenger comfort, the elevator angle and the pitch angle
are  limited to  £15° (£0.262  rad)
and +£20°(+0.349 rad), respectively. Considering the
actual condition for actuators, the constraint |Au| <
0.542 is also included.

An MPC controller is intended with a sampling
interval of 0.5s, the horizons of N =10and N, = 3.
(The eq.2 and others shall be edited) Our objective is to
track the reference [0; 400m; 0] for the outputs.

The QP problem (2.39) withQ =15.3;andR =11is
explicitly solved using MPT Toolbox [23]. The explicit
solution (3.7) consists of a PWA function with 117
regions where |Rynsa¢| = 80, |Rgae| = 19 and | R4¢| =
18. The separator function
B(x) :=[—42.74 * 10%,10°,26.57 = 10%,—3.6 *

10711,1.67 *107°] * x + 1.309 * 1078
is obtained to separate the regions over which control
input attains a saturated value. Then, the sign of the
separator function B (x) is used so that the evaluation of
the saturated regions is no longer required to obtain the
control action. Therefore, there is no need to save the
saturated regions, and the regions can be eliminated.
Next, the extreme points of the unsaturated regions are
evaluated to find symmetries in the regions. The
evaluation leads to the symmetry group Aut(u*)
consisting of a reflection about origin of coordinate
system as follows:

-1 0 0 0 0
0 -1 0 0 0
@,0)=[lo o -1 o o1
0 0 0 -1 0

0 0 0 0 -1

Due to the reflection, 40 regions of Ry, are removed
because the regions can be recovered by the symmetry
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Fig. 3. Responses to 400m step change in altitude set-point.

group Aut(u*). The comparison between the proposed
approach, sequential search method and the algorithms
from [12] and [14] are reported in Table 111 in terms of
memory footprint and worst-case computation effort
(FLOPS). The table shows that the proposed method
needs much less resources to obtain the control actions.

Fig. 3 shows the responses to the output set point of
[0; 400m; 0] processed by the Algorithm 3 and the
traditional explicit MPC in (3). As it can be seen, the
responses are completely identical such that the
simplification not only ensures the system remains stable,
but it also leads to no changes on the set-point tracking
performance. Moreover, Algorithm 3 allows an
inexpensive implementation for the high-order system.

The online computations to track the output reference
was performed using Matlab 8.3 on a 2.4 GHz Core i5.
Table IV presents the comparison between Algorithm 3,
the original function and the algorithm PDIP proposed in
[20], [24] in terms of average worst case CPU time per
sample.

V.  CONCLUSION

An efficient integrated approach has been presented in
this paper to reduce storage requirement and solution
complexity of the QP problems in explicit MPC
implementation for embedded applications based on
offline and online computations, utilizing two main steps.
The first step is elimination of the saturated regions
which attain saturated value using a simpler replacement
function. In the second step, the redundant symmetric
regions are efficiently identified and removed to simplify
the inherent complexity on the basis of QP self-similarity
patterns. The proposed approach hence combines the
interesting merits of both individual schemes to achieve
a simpler control law for which its implementation needs
less hardware resources than of the original function. It
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TABLE Il
ONLINE COMPUTATION AND MEMORY COMPLEXITY OF ALGORITHM 3
vS.
OTHER APPROACHES
Sequential ~ Algorithm  Algorithm  Algorithm
search 3 from [12] from [14]
FLOPS
(worst 8925 6374 6174 9515
case)
Storage
(real 8222 2832 5655 4116
numbers)
TABLE IV

ONLINE COMPLEXITY OF ALGORITHM 3 VS. OTHER APPROACHES

Sequential ~ Algorithm Algorithm PDIP from
search 3 [20], [24]
Worst case
CPU time 4.5ms 3.5ms 13.5ms

was observed that the storage requirement can be reduced
by a factor of the total number of regions over the number
of regions which are unsaturated and non-redundant.
Finally, the effectiveness of the proposed method was
experimentally supported by comparative conducted
tests using alternative approaches.
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