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Abstract—Designing linear MPC with pre-specified
closed-loop characteristics for stability and robustness con-
sideration as well as optimal time domain performance, is
an interesting issue. In this paper, we develop a new ena-
bling formulation, which can explicitly show existence and
properties of the linear controller counterpart for transfer
function-based MPC, known as Generalized Predictive
Control. This development allows one to transform desired
closed loop specifications to constraints on new-defined var-
iables of the GPC optimization problem along with desired
time domain performance-related design parameters. Input
output constraints also can be transformed to constraints on
these new variables. Fantastic results are illustrated by an
ongoing example. It is a unified approach to answer some
key questions in both theory and application such as analy-
sis and design for desired performance, stability and robust-
ness, controller matching, reference governor GPC, and de-
sign of model reference predictive control in data-driven
control.

Keywords: model predictive control, pole-placement pre-
dictive control, optimal control, robust control, controller
matching.

. INTRODUCTION

M ODEL predictive control (MPC) is the most applied

advanced control scheme due to its attractive fea-
tures. However, in contrast with other linear control tech-
niques, closed-loop properties such as stability and ro-
bustness are usually not taken into account in MPC de-
sign [1]. Thus, the general question: “how MPC closed
loop characteristics can be analysed and shaped, and how

trade-off between stability and performance can be for-
mulated and optimized?” has been raised from the early
times of its development. It is well-known that every lin-
ear transfer function-based MPC (Generalized Predictive
Control —-GPC) can be transformed to a linear controller
(general two-degree of freedom -RST- controller), and its
characteristics can be analyzed by its counterpart instead
[2]. So specific questions which arise are: 1) What rela-
tionships are there between GPC design parameters and
counterpart RST controller terms? 2) For a desired closed
loop characteristic polynomial, how design parameters of
the counterpart GPC can be calculated or, should be se-
lected? 3) When closed loop poles of a GPC set according
to given requirements, how many degrees of freedom re-
main for time optimality performance consideration? 4)
How constraints handling capabilities of the MPC can be
considered along with closed loop characteristic require-
ments?

There are two different approaches to the problem. In the
first approach, influences of the MPC design parameters
on closed loop tracking transient response, including rise
time and error as performance indicator and overshoot
and settling time as robustness indicators, have been
studied and some guidelines were suggested for tuning
MPC (See [3] and review papers [4], [5], [6] and refer-
ences there in).

The second approach, which is also followed in this pa-
per, has been studying relationships between MPC design
parameters and its counterpart linear controller terms.
Mohtadi and Clarke [7] showed that both linear quadratic
(LQ) and pole-placement control can be derived using
GPC framework by choosing appropriate horizons and
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design polynomials. Fikar et.al. in [8] studied relation-
ships between stable predictive control and pole place-
ment. Landau and his colleagues [9] have mentioned that
every RST controller is a one step ahead MPC, and an
RST controller can be designed in the time domain using
one step ahead MPC strategies, as already showed by
Camacho and Bordons in [2] and references therein.
Cairano and Bemporad in [1] addressed the following in-
verse problem: “how to select the performance index (in
particular, the weighting matrices) of a linear MPC con-
troller so that it behaves as a given favorite linear con-
troller when the constraints are not activated”. The prob-
lem also has been addressed as pole restricted GPC to
find control weights to put closed loop poles in a desired
- although shaped to be solvable - region in the z-plane
[10]. Hartley and Maciejowski in [11] proposed a method
using the observer-compensator realization of a more
general class of stabilizing LTI output feedback control-
lers. Tran and colleagues in [12] proposed a method for
finding weighting matrices in the cost function that will
result in the GPC gain as required. Shah and Engel in [13]
followed transfer function formulation of the problem to
calculate GPC tuning parameters, but for some simplified
cases.

However, although there have been many studies on the
subject, some basic and important questions were ignored
or answered incompletely. Among them are explicit lim-
itations on, and relationships between, GPC design pa-
rameters and orders of RST controller terms, plant model,
and closed loop characteristic polynomial, which should
be considered appropriately in defining requirements.
Also there are some degrees of freedom which should be
recognized. In this paper we focus on two important is-
sues. At first we reformulate GPC in a well-suited form
which facilitates structural analysis of it and its counter-
part RST controller in detail. Next we propose a new
method to transform pole-placement designed RST con-
troller to equality constraints on GPC controller gain.
This derivation enables us to analyze various aspects of
the pole-placement GPC. The proposed design algorithm
can also consider constraint on input and output, which
has not been addressed in the previous works. We also
show that when constraints are consistent, the resulting
controller is feasible and its stability is guaranteed. We
also show that the resulting controller is a reference gov-
ernor MPC; i.e., its counterpart controller comprises of
an inner loop stabilizing controller and an outer reference
governor (RG) controller [14], [15].

The remaining parts of this paper are as follows. In Sec-
tion 11 we review the pole-placement design of RST con-
trollers. In Section I11 a new formulation for GPC which
is comparable to RST controller structure is introduced.
In Section IV - the main part of the paper - the procedure
of pole-placement design of GPC is developed. Some of
its properties such as degrees of freedom for either of

closed-loop pole-placement and time optimal perfor-
mance and offset-free condition have been highlighted
and proved. Detailed formulation for design of uncon-
strained linear GPC controller with pre-specified closed-
loop requirements is derived in Section V. In Section VI
the suggested method will be extended for inequality
constraints on the plant’s input and output. Looking at
pole-placement GPC as a reference governor and its var-
iants is discussed in Section VII. In section VI1II several
illustrative examples are used to clarify main results of
the paper. Finally, in Section IX the work is concluded,
and future works are addressed in Section X.

I1.POLE-PLACEMENT DESIGN OF RST CONTROLLER

It is believed that all conventional linear controllers have
equivalent RST counterparts. The pole-placement allows
designing an RST controller for stable or unstable sys-
tems, without restriction upon the degrees of the numer-
ator and denominator polynomials of the plant model and
RHP zeros [16]. Figure 1 shows the structure of RST con-
troller, where plant is described by

Az )y() = Bz Hu(t)

Az D) =1+a;z7 " + -+ a,,z7"4,

B(z™") = bz " + 4 by,z7"B,b; = 0,i =

1,---,d (plant delay)

and the controller polynomials are defined as

Rz™) =1y +mz™ "+ + 1,278,

S =148z + 45,27, )
T(z7) =ty +tiz7" + o+t 27",

r(t) —-{ Tz~

‘ 1/5(z"1) —r‘ Gzt l———r ¥(t)

Fig. 1. Block diagram of the standard RST controller.

Desired closed-loop characteristic polynomial is in the
Diophantine equation form
Az =4S Y +B(EZHR(E™)
=1+4+az7 + -+ a8y, )
This equation can be solved when written in Mx = ¢
form as

— —ng—— —-np+1-—>

1 i 0 b 8_'51- [ 31— Gy ]
a 0 bt O @~
: : : Y ||sn :
anA—l : O an—l : 0 rOS - C_lnA - anA
An, 1 bn, i by r a
0 : a, 0 : bz 1 n,.4+1
0 Gngy 0 bny, e s
3)
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There are unique minimal solutions for R(z™1) and
S(z') when polynomials A(z™') and B(z™!) are
coprime and the left hand matrix of (3) is full row rank
[9], [17]. Thus, the number of independent equations in
(3)isq =ny + ng — 1,theordersof R(z™1),and S(z™1)
are ng =ny — 1,ng = ng — 1, and the order of desired
A(z™) should be

ng<ny,+nz—1 4)

Polynomials R and S can have pre-specified parts — a dif-
ferentiator for example - to impose an integrator, or some
robustness and/or closed loop performance requirements.

I11.GENERALIZED PREDICTIVE CONTROL, A NEW
FORMULATION

GPC is one of the well-developed MPC algorithms
with good capabilities in control of various types of
plants, and comparative features with transfer function-
based controllers. The future outputs of system can be es-
timated using the corresponding difference equation
y(t+) =2 but+j -0 - E4 ayt+j—0).
As y(t +j — i) is not available for j —i > 0, it is esti-
mated based on past outputs recursively. Proceeding the
same manipulation, one can arrange final result for
$(t+ 1|t) up to y(t +d + P|t), (P is the prediction
horizon), in the following matrix form

@+ 1)
y(t+2t)
9t +d + Plt)
[ b, 0 .. 0 u(t)
—a;by+b, by - 0 u(t+1) +
L byl lu(t + pP- 1)
b, L u(t—1)
—a1b2 + b3 _alan u(t - 2) +
u(t — (ng — 1))
[ —aq —a, —anA y(t)
ay — a a;an v _ D (5)
Y(t —(ny — 1))

Prediction model is the last P equations of (5), and can be
described in compact form

y = Hpup + Hpy, + Fypy, (6)
where terms of (6) are as appear in (5) respectively. Ele-
ments of H,, and F can be described by
Hp(i,)) = barjy + Xii(—a) Hn (i = 1,j); i =1:P,
j=1lng—1and q,b,=0forl<1,and [ >n, and

l > nB, (7'a)
F(@,)) = —agsj-n + Xisi(—a) F(i = 1,j); i=1:P,
j=Llingandag, =0forl <1and!l > n,. (7-b)

For linear systems and unconstrained quadratic cost func-
tion (8-a), controller gain matrix K is (8-b) [2]
J=Q"(r—w)?Q + R"u,R (8-3)
K = (HIQH, + ) "H!Q, (8-b)
where @ and R are output error and control effort penalty
weighting matrices, and control input to the plant is
u(t) = k(W = (it + Fyin)), ©)
where k = [kq, k,, -+, kp] is the first row of K in (8),
and w is the reference trajectory. When future reference
trajectory is known, w is set to: w=[w(t+d+
D,w(t+d+2), - ,wt+d+P)]T, and control is
named as Preview MPC, otherwise w is set to: w =
[w(t),w(), - ,w()], and control is named as Non-
preview MPC.

1V.BAsIcs of POLE-PLACEMENT GPC

Using Sections 1l and 111 results, we can compare and
match counterpart terms in pole-placement and GPC to
derive GPC gain. Equation (9) can be re-written as
u(t) + kH,u,, = kw — kFy,,

Terms of this equation can be transformed to the z-power
series form,

u(t—1)
u(t) + kH,u,, = u(t) + kH,, : ]

u(t — (ng — 1))
1

-1

=[1 kH,l| . |u®, (@10-2)

| 7z~ (n3-1)
w(t+d+1) [ 7d+1
kw =k : =k| : lw(t), (10-b)
w(t+d+P) [, a+P
1
kFy,, = kF y(t). (10-c)
7~ (na-1)

In standard pole-placement RST controller, control input
is given by

S Du®) =T Hwt) — Rz Hy(), (11)
where R, S, and T were defined in (1).

When the future reference trajectory is known or can be
estimated, polynomial T can be in ascending power of z
up to prediction horizon P

T(z) =tz + o+t 29" np = P (12)
then, terms of (11) and (12) can be represented similar to
(10)

1
Rz Dy®)= [0 - T"R][ E ly(t)’ (13-a)
z "R
1
S Hu@) =1 - Sns]l : lu(t), (13-b)
s
Tw(t) = [t1 tnr][ : ]W(t)- (13-c)
Zd+nT

The corresponding pole-placement and GPC terms are
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1 1
forR: kF : =[romel| i | (14-a)
z—(na-1) 7~ MR
1
z71 z71
forS: [1 kH,,] : =[1..sg]| % | (14-b)
2~(5=D) :
4d+1 z
forT: k =[ty ty]| :+ |inr=P. (l4-0)
Zd+P Zd+nT

Equations (14-a,b) can be arranged in Mx = ¢ form to
calculate GPC gain k.

51
ng=ng—1
Sy ng=mny—1
m(nB 1)><P][ l 1" Ny =P (15)
Frgxp To |4 =k = 1:P
' i=1:P
rnR

For the desired RST controller to have a GPC counter-
part, (15) should have at least one solution. There exists
a solution for k when [H,,,|F]T is full row rank; i.e., row
rank of [H,,|F]" be equal to n, + (ng — 1), and P >
ny + (ng — 1). But as will be shown in Theorem 1, the
row rank of [H,,|F]" is equal to max (ny,ng — 1).
Therefore, an RST controllers has a GPC counterpart
when the order of desired closed loop characteristic pol-
ynomial be n; < max (ny, ng — 1) and is not the same
as (4) for general pole placement.

Theorem 1: For co-prime A and B polynomials, the row
rank of augmented matrix [H,,|F]T ismax (ng4,ng — 1).

Proof: Equations (7) explicitly shows that the first terms
b(i+j) =0 fori> npg — 1, and a(i+j_1) =0 for i > Ny
respectively, and following rows are linear combination
of previous rows. Thus we can conclude that

T
Hm(nB 1)XP

column rank of| ——— = max(ny,ng — 1)

FTnAXP (16)
for P > max(ny, ng — 1)

The result of Theorem 1 puts some restrictions on R and

S. However, requirements such as integral control can

easily be considered in predefined parts of R(z™1) and

S(z™Y). n

Theorem 2: Every pole-placement controller has a corre-
sponding GPC counterpart when its closed-loop charac-
teristic equation A(z™1) be

ng < max (ng,ng — 1) a7

Proof: Replacing unknowns vector of (2) with (15)

1 0 by 0
a, 0 b, 0
an:4—1 E. 0 an—l f. 0 [H]‘;l(nB 1)><P] [kll _
a | b i by T T
SA a, SB b2 FhAXP kp
0 anA 6 an
a, —a;
a; — a,
Gny = Ony (18)
anA+1
C_ln;l

The first term of (18) is a full rank square n, + nz — 1
matrix, and second one is (n, + ng — 1) X P rectangular
matrix, and its column rank is max (n4, ng — 1). There-
fore their product will be an (n4 + ng — 1) X P rectan-
gular matrix, and its rank is equal to max (n4,ng — 1).
This means that degrees of freedom of desired closed
loop characteristic polynomial A(z™1) is max (n,, ng —
1).

However, is this restriction on the pole places, or number
of poles? Surprisingly, as will be shown, the product of
the first two matrices of (18) is a simple matrix, and its
rows after max (n,, ng — 1) are identically zero, i.e., or-
der of A(z™1) is max (ny,ng — 1). Two first terms in
(18) can be expanded as:

HT
m
M _T = [Ml(nA+nB—1)><(nB—1) MZ(“A+"B_1)X(nA)]
| F
[T
m(n —1)xP| __ r
TB = M1(nA+TLB_1)X(nB_l)Hm(HB—l)XP
F%AXP

+M2(nA+nB—1)x(nA)FrTleP
Replacing terms of final expanded form by (3) and (5)
and focusing on last ((ny +ng — 1) — max (ny, ng —
1)) rows, named X, gives

—a1b2 + b3
max(nAnB 1)
anA 1] l nB 1 = TLB 1t b
0 alb
bmax (nanp-1) a, al _ a..
n 0 by _ar'lA_l ,
0 s an _anA alanA s

a; =0,i > nA,andb]- =0,i >ng
Reduced M1 and M2 matrices are upper triangular, and
calculation shows that the first column of X equals zero
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X,

= anAan—l + anA—lan - ananA—l - an—lanA

-l

Equation (7-a, b) shows that the proceeding columns of
HT and FT are the same linear combinations of the pre-
vious columns plus the first column shifted upward.
Thus, all rows after max (n4, ng — 1) of multiplier ma-
trix in (18) are equal to zero. |

anAan — ananA

A. Offset free control

When the plant is Type 1, or a differentiator is added
as a predefined part of S(z~1), we expect an offset free
control, i.e., the DC-gain of R(z™1) and T(z) should be
equal;

fki =R Ve or X1 ki =18 7 (19)
Theorem 3: When there is an integrator in forward route,
DC gain of R(z™1) and T(2) (X%, k;) are equal, and the
derived control is offset free.

Proof: When the plant transfer function is Type 1 or
greater, the steady state gain of the system is infinity; i.e.
Az Va1 =14+a;++a,, =0,0r

a; + -+ ap, =-1 (20)
Relation between elements of polynomial R and k can be
highlighted from upper set equations in (15);

k]_ To
(FT)nAXP[El:[:IlnR:nA_ll
kpl  1Tg

and (19) is true when sum of elements of each column of
FT be equal to 1. Replacing for FT(i, j)’s from (7-b) and
renumbering row index for corresponding F(i,j)’s, one
obtains

S FTGL D = N4 P = 574 (—agejon —
Tittagn FGi— L))

Fori =1, from (7-b)

27;41 FT(j' 1) = ZyilF(lJ) = 27:1 —a; = 1,

and for i > 2, for succeeding rows we can conclude con-
secutively using (20)

Z;’lilFT(]" i) = Z?ﬁlF(i,j) = (—ai —_————— anA) +
Z%;} —ag-p 27;41 F(L - l,j) = (—ai e — anA) +
(_al -t ai—l) =1. n

V.DESIGN of UNCONSTRAINED POLE-PLACEMENT GPC

In conventional unconstrained GPC design, gain matrix
(8), is used to calculate the controller gain. In Section 1V
we derived some equality constraint on gain vector k to
satisfy the desired closed-loop characteristic. In this sec-
tion we show that GPC optimization problem can be
modified to be directly solved for K matrix with some

equality constraints on its first row. Cost function (8-a)
for basic GPC can be written as

J=(w—=(Hyu, + ) Qw — (Hyu, + ) + ulRuy,
f = Hmum + Fym- (21)
Unconstrained optimization on input vector u,, leads to a
gain matrix K. There are two approaches to consider con-
straints (15); the first is to consider it for the first row of
the GPC gain matrix (8), and second approach is to con-
sider it for all rows of K. In practice the first row deter-
mines the GPC gain so we consider constraints on first
row. Control at time t is given by (9), or u(t) =
(w — f)7[ky ky -+ kp]™. Thus u, can be written as

u(t)
] ou(+1)
u, = :
u(t+P—-1)
kq
w - f)T 01><(P—1) kp _
Op-nxp  Ip-1) u(t + 1)
u(t+P—-1)

WPFpy2p-1)Up (2p-1)x1- (22)

Rewriting cost function (21) in standard quadratic form
J =ul (HIQH, + R)u, —ulHI Q(w — ) — (w —
£TQHpuy + w = )TQwW — f)

and replacing for u,, from (22) gives the cost function J
as a standard quadratic function of ,

J = upWFT(H}QH, + R)WFu, — usWFTH} Q" (w —
)= w—=HTQHWFT, + w—)TQ(w —f). (23)
When (23) be solved subject to constraints (22) on k, the
derived GPC controller will have desired closed-loop
poles. At every time step t, optimal command u(t) is cal-
culated indirectly using calculated k part of u,,.

This algorithm also can be used for designing GPC with-
out pre-specified closed loop characteristics when solved
without equality constraints (22). For positive definite Q
and R, (23) is a convex optimization problem. Although
the WF in (22) is varying with time but because con-
straints (22) are satisfied through optimization, close loop
characteristic of the controller is time invariant. Effect of
time variance of the controller gain and other important
features of the proposed algorithm and the previous sec-
tions results are discussed below.

A. Discussion 1

1. A pole placement designed RST controller has a GPC
counterpart if the order of its closed loop characteristic
polynomial meet (17), i.e., ngy < max (ny, ng — 1).

2. Regarding proposed pole-placement GPC design algo-
rithm, the number of optimization variable (k;’s) put in
place of u(t), are equal to P. Pole placement require-
ments puts max (ny, ng — 1) equality constrains on op-
timization variables and there remain P — max (n,, ng —
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1) degrees of freedom to be used for time optimality, but
it is only for preview control.
3. According to (15), counterpart R(z~1) and S(z™1) pol-
ynomials are fixed and do not change by changing MPC
design parameters P, Q, and R.
4. Control horizon (M, M < P) also does not change
closed loop characteristic. Changing M do not changes
anything for non-preview control, but it changes tracking
characteristic of the control for preview control when
P > max (ny,ng — 1).
5. Preview vs. Non-preview pole-placement GPC: As
clarified in previous discussions, GPC design parameters
can only alter T(z). But according to (19), T(z) is also
fixed for non-preview control. But in preview control,
GPC design parameters forms T'(z), so tracking behavior
of the control. This enables multi-objective optimization
of control for both time domain and frequency domain
requirements.
6. Is the outcome controller linear or non-linear? Also, is
it time variant or invariant? Equations (9)-(14) explicitly
show that the outcome controller is equivalent to the form
of (11), where R(z™1) and S(z 1) are set to desired pole-
placement controller terms. Nevertheless, T(z) may vary
with time for pre-view controller and for constrained con-
trol, which will be discussed in Section VI. However,
GPC is a finite time optimal control, and is time-variant
as any other finite time optimal control. However, T (z)
is the time varying term and do not alter closed loop char-
acteristic.
7. Stability of the control: For unconstrained pole place-
ment GPC, (23) always has at least one finite solution.
For preview control, although the controller may be time
variant, but control is bounded input-bounded output sta-
ble. This can be proved easily by expanding the control
as sum of bounded terms of T'(z) (i.e., k;z*) of the stable
closed loop system
— _ T@B@ =kizt 4+ -+ k 7P
¥ A(z)S(z)+B(z)R(z)r(t)’ (@) 12 pe
so existence of finite k;s, as there are for consistent con-
straints, is sufficient for stability of the closed loop con-
trol system.
8. Comparison with others’ works
Some other researchers, e.g., [18] have used (8-b) instead
of (22) which leads to complicated results to solve for
GPC error and control effort weighting. Also they have
not clearly discussed important issues such as degrees of
freedom and limitations on desired closed loop character-
istics, and time optimality consideration along with de-
sired closed loop features.
Works of Maciejowski [19], Cairano and Bemporad in
[1] followed by Hartley and Maciejowski in [11] are
based on development of state observer-based of (23) to
find all MPC design parameters. But they also have not
addressed the above-mentioned important issues. Our so-
lution in frequency domain, based on transfer function

description, is also more amenable for studying GPC re-
lated problems.

V1.DESIGN of CONSTRAINED POLE-PLACEMENT GPC

The most favorable feature of model predictive con-
trollers is their ability to handle constraints on input,
states and output. GPC formulation derived above can
also consider these constraints. Constraints on input u,
can be transformed to constraints on new defined variable
i,

up min(t) ] up (t) up max(t)

Uy, min(t + 1) < up(t +1) < Uy, max(t +1) (24-

_upmin(t+P)- up(t+P) upmax(t+P)
a)
Replacing u,, using (22), results in constraints on %,
Up min(t) ]

up min(t + 1)

<
-up min(t + P)-
ks
(W= )" O1xpn kp <
[ Op—1)xp  I(p-1) u(t + IO
u(t+P—-1)

Up max(t)

Upmax(t + 1) (24-b)

-up max(t + P)

Based on (24-b), control input constraints can be trans-
ferred to inequality constraint in the form of Ax < b.
Constrained GPC controller with pre-specified closed-
loop characteristic can be derived by minimizing cost
function (23) subject to pre-specified closed-loop re-
quirements (21) and input constraints specified by (24-
b).

Constraints on output y, can also be transformed to con-
straints on input u,, and afterward on new defined #,, us-
ing prediction model (9).

For equality and inequality constrains y = y, and y <
y <y, we have

Hyu, + f =y, > Hyu, =y, — f, (24-c)

H v —
y<Hu,+f<y = [_;}p] u, < [_yz +ff], (24-d)

which can be considered in (24-a) and (24-b) as well.
However, existence of a feasible solution set to the opti-
mization problem should be checked.

B. Stability of the constrained pole-placement GPC

Stability of the constrained pole-placement GPC also
can be shown similar to unconstrained control. When
constraints are consistent, optimization problem (23) has
bounded solution, and control is BIBO stable.
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VI1.REFERENCE GOVERNOR GPC

Reference governor (RG) is an add-on control schemes
to stable control loops, which will be activated when
changing reference input is going to deteriorate con-
straints. With the proposed designing algorithm, one can
freeze S(z™1) and R(z™1) of a linear unconstraint GPC -
a pole-placement GPC - and let T(z) to act as a dynamic
RG. Thus RG functionality is an intrinsic capability of
pole-placement GPC.

VIII. ILLUSTRATIVE EXAMPLES

Findings of the paper are illustrated in some illustrative
examples.

Example 1: Order of closed loop characteristic polyno-
mial
Example 1 shows basic results of sections 11-1V. Con-
sider below plant transfer function, for which n, = 2 and
ng = 2,
_ y(z71 0.2z 1+0.3z72

G(Z 1) = uEz—lg - 1-1.8z"140.8272"
To design an RST controller using (2) and find a unique
minimal solution, one should consider (4)
ng=ny—1=1 = R=ry,+nrz7},
ng=ng—1=1 = S=1+s,271,
ng<nyg+ng—1=3,
and to have the counterpart GPC controller one should
consider (17)
ng < max (ng,ng —1) = 2.
We select a second order characteristic equation as fol-
lows
A(z7Y)=1-12z"1+0.52z72.
Polynomials R and S can be determined using (2)

1 02 017rs51 -12+1.8
-1.8 0.3 0.2] [To] = [0.52 - 0.8
08 0 0311 0
The resulting polynomials are
S =1+0.3078z"1 R = 1.4609 — 0.8209z1.
GPC prediction horizon should be selected using (16; i.e.,
P = 2.For P = 4, (15) will be

03 054 0732 0.8856 il

1.8 244 2952 3.3616] k2 =

—0.8 -1.44 -1952 -2.3616 k3

0.3078 !

1.4609] (25)
—0.8209

Ranks of both coefficients and its augmented matrices in
(25) are equal to 2 and satisfy (16). For P = 2 it has
unique solution: [k; k,] =[0.1577 0.4824]. Plant is
Type 1 and for offset free control (19), R(z71),, =
k, + k, = 0.64 should be satisfied. For P > 2, we have
P — 2 degrees of freedom for k;’s, which can be a solu-
tion of the optimization problem in the corresponding
GPC subject to equality constraints (18).

If one consider (4) instead of (17) to design RST control-
ler, the resulting controller has not a counterpart GPC.
For example, forng < n, + (ng — 1) = 3and A(z™?) =
(1-1.2z71+0.52z72)(1 — 0.9z71), polynomials R
and S can be found using (3) as

1 02 01rs5 -21+18
-1.8 0.3 0.2] [7"0] = [ 1.6 —-0.8
0.8 0 0311 —0.468
Solving this equation results in
R =0.5374—0.4734z71,5=1-0.4075z"1.
For P = 4, according to (33), k should be a solution of

k
[—0.8 —1.44 -—-1.952 —2.3616]Ik1

1.8 244 2952 33616 ||’
03 054 0732 0.8856 1] 3

k.,
—0.4734
[ 0.5374 ]
—0.4075

Since ranks of coefficients matrix is 2, and rank of its
augmented matrix is 3, then there is not any solution for

k.

Example 2: Minimum prediction horizon

Example 2 illustrates design of pole-placement GPC for
minimum prediction horizon. When controller is de-
signed subject to the desired closed-loop poles consid-
ered in (20), the controller gain matrix can be calculated
using (32)-(33). Step response, optimum k;’s, and closed
loop characteristic polynomial coefficients for desired
characteristic  polynomial A(z™')=1-1.2z"1+
0.52z72, P=M=max(ngng—1)=2, Q=R=1
are shown in Fig. 2 for unconstrained preview, and in
Fig.3 for non-preview control. As can be seen there is no
extra degree of freedom for k;’s, and results for both are
the same, and Y’ k;s = 0.64, the same as in Example 1.

Example 3: Effect of greater prediction horizon
Figure 4 shows output results for prediction horizon P =
4 > Pin, and for Q = I and &= 1. Although they vary
with time due to remaining two degrees of freedom for
k;s, but closed loop characteristic is as desired.

Example 4: Effect of GPC design parameters on preview
control

Figure 5 shows simulation results of Example 3 by de-
creasing control effort weighting to R = 0.011. As we
expect, it has faster tracking behavior with bigger control,
while reserving regulating behavior (closed loop charac-
teristic unchanged). Both Figures show that although k;-
s may vary during steady state, but controls do not
change, and variations are due to degrees of freedom of
k;-s.

Example 5: Constrained pole-placement GPC

Figures 6 shows input constrained control of preview
control of the plant for = 0.01/ , shown in Fig. 4,
which has meet control constraint while preserving
closed loop characteristic. But for Non-preview there is
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no feasible solution when constraint is activated. Figure
7 shows outcomes of the algorithm for a 200 times itera-
tion, which is not converged, and unacceptable solution.

IX.CONCLUSION

In this paper we introduced a new formulation for GPC
to be comparable to RST controller. By comparing two
formulation peer to peer, we derived a new formulation
for designing GPC with pre-specified closed-loop prop-
erties. The derivations explicitly show some important
properties of the GPC; some has not been clarified be-
fore. The developed method can also be used for input
and output constrained control with guaranteed close
loop stability; which has not addressed before. New de-
rived properties of GPC and capabilities of the proposed
design method are examined through some examples.
The approach is also attractive for theoretical studies; it
unifies some other extension and reduces them to basic
MPC context such as controller matching which is not a
new problem, and can be solved as an ordinary MPC. We
showed also that a GPC can intrinsically be a reference
governor controller, with guaranteed closed loop stabil-
ity; a seamless solution to the problem rather than add-on
schemes.

X.FUTURE WORKS

As in similar works, to have more flexibility, and op-
timize closed loop characteristics along with time re-
sponse behavior, loosing equality constraints will be con-
sidered in future works. Extending the proposed method
to MIMO systems is also an interesting subject.

Our main motivation to this development has been pre-
paring required analysis methods and design tools for
model reference MPC for data driven MPC, an emerging
field in control engineering. So, we will demonstrate
some new application of outcomes in our ongoing works.
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Figure 2: Pole-placement GPC, unconstrained, preview con-
trol, P=2, R=1.
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Figure 3: Pole-placement GPC, unconstrained non-preview
control, P =2, R =1.
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Figure 5: Pole-placement GPC, unconstrained preview con-

trol, P=4, R=0.01.
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Figure 6: Pole-placement GPC, constrained preview control,

P=4R=0.01.
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Figure 4: Pole-placement GPC, unconstrained preview con-
trol, P=4, R=1
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Figure 7: Pole-placement GPC, constrained, non-preview
control, P=4, R=0.01. (Not converged)

Note: In all figures, the upper one is for Reference, Control and Output, the middle shows calculated controller gain vector and,
and sum of the gain elements, and the bottom shows closed loop characteristic equation’s coefficients.
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