Volume 1, Issue 1 (Journal of Control (English Edition), VOL. 01, NO. 01, 2022)                   jocee 2022, 1(1): 71-83 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rashidnejad Z, karimaghaee P. Design of adaptive backstepping control for stabilization and synchronization of a class of uncertain fractional-order chaotic systems with uncertainties and disturbances. jocee 2022; 1 (1) :71-83
URL: http://jocee.kntu.ac.ir/article-1-24-en.html
1- Departments of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
Abstract:   (517 Views)
In this work, the goal is to achieve both stabilization and synchronization of a general class of fractional-order chaotic systems. It is assumed that there are uncertainties and external disturbances in the system, and it is also supposed that the system parameters are unknown. Uncertainties and disturbances are undesirable factors that can disrupt the system response. To this end, appropriate adaptive laws have been proposed to address these factors. A systematic step-by-step technique is also developed for designing a controller based on the backstepping method. The analysis of the proposed control structure is carried out according to the fractional Lyapunov theorem which is a more realistic technique for the analysis and stability of nonlinear systems. Finally, the simulation results are presented to confirm and prove the effectiveness of the proposed method. The results of implementing our proposed controller for different fractional-order chaotic systems are compared with some control approaches in the available papers and it confirms the superiority of the proposed control in this paper.
Full-Text [PDF 1149 kb]   (215 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2021/07/8 | Accepted: 2022/06/10 | Published: 2023/05/5

References
1. [1] G. Senouci and A. Boukabou. "Fuzzy modeling, stabilization and synchronization of multi-scroll chaotic systems." Optik, vol. 127, pp. 5351-5358, 2016. [DOI:10.1016/j.ijleo.2016.03.019]
2. [2] S. Li and M. Hernandez. "Robust synchronization of chaotic systems with novel fuzzy rule-based controllers." Information Sciences, vol. 481, pp. 604-615, 2019. [DOI:10.1016/j.ins.2018.12.066]
3. [3] B. Wang and S.M. Zhong. "Observer-based control on a chaotic system with unknowns and uncertainties." Optik, vol. 137, pp. 167-174, 2017. [DOI:10.1016/j.ijleo.2017.02.079]
4. [4] A. Khan. "Combination synchronization of Genesio time delay chaotic system via robust adaptive sliding mode control." International Journal of Dynamics and Control, vol. 6, pp. 758-767, 2018. [DOI:10.1007/s40435-017-0339-1]
5. [5] A. Djari. "Optimal Projective Synchronization of Non-identical Fractional-Order Chaotic Systems with Uncertainties and Disturbances Using Fractional Sliding Mode Control with GA and PSO Algorithms." Arabian Journal for Science and Engineering, vol. 45, pp. 10147-10161, 2020. [DOI:10.1007/s13369-020-04570-y]
6. [6] X. Chen, J.H. Park, J. Cao and J. Qiu. "Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances." Applied mathematics and Computation, vol. 308, pp. 161-173, 2017. [DOI:10.1016/j.amc.2017.03.032]
7. [7] S. Vaidyanathan, A.T. Azar, K. Rajagopal and P. Alexander. "Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control." International Journal of Modelling, Identification and Control, vol. 23, pp. 267-277, 2015. [DOI:10.1504/IJMIC.2015.069936]
8. [8] X.R. Tao, L. Tang and P. He. "Synchronization of Unified Chaotic System via Output Feedback Control Scheme." Journal of Applied Nonlinear Dynamics, vol. 7, pp. 383-392, 2018. [DOI:10.5890/JAND.2018.12.006]
9. [9] X. Li, J. A. Fang and H.Li. "Exponential synchronization of memristive chaotic recurrent neural networks via alternate output feedback control." Asian ournal of Control, vol. 20, pp. 469-482, 2018. [DOI:10.1002/asjc.1562]
10. [10] X. Zhang, X. Lv and X. Li. "Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control." Nonlinear Dynamics, vol. 90, pp. 2199-2207, 2017. [DOI:10.1007/s11071-017-3795-4]
11. [11] H.L. Li, Y.L. Jiang and Z.L. Wang. "Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control." Nonlinear Dynamics, vol. 79, pp. 919-925, 2015. [DOI:10.1007/s11071-014-1711-8]
12. [12] Y. Li. "Impulsive synchronization of stochastic neural networks via controlling partial states." Neural Processing Letters, vol. 46, pp. 59-69, 2017. [DOI:10.1007/s11063-016-9568-0]
13. [13] G. He, J.A. Fang, Z. Li and X.Wang. "Synchronization of Coupled Switched Neural Networks with Time-Varying Delays." Arabian Journal for Science and Engineering, vol. 40, pp. 3759-3773, 2015. [DOI:10.1007/s13369-015-1812-9]
14. [14] Y. Cao, R. Sriraman and R. Samidurai. "Stability and stabilization analysis of nonlinear time-delay systems with randomly occurring controller gain fluctuation." Mathematics and Computers in Simulation, vol. 171, pp. 36-51, 2020. [DOI:10.1016/j.matcom.2019.03.002]
15. [15] K. A. Abro and A. Atangana. "Numerical study and chaotic analysis of meminductor and memcapacitor through fractal-fractional differential operator." Arabian Journal for Science and Engineering, vol. 46, pp. 857-871, 2021. [DOI:10.1007/s13369-020-04780-4]
16. [16] Z. Rashidnejad and P. Karimaghaee. "Projective synchronization of different uncertain fractional-order multiple chaotic systems with input nonlinearity via adaptive sliding mode control." Advances in Difference Equations, vol. 1, pp. 123-128, 2019. [DOI:10.1186/s13662-019-2423-7]
17. [17] P. Karimaghaee, Z. Rashidnejad. "Lag-synchronization of two different fractional-order time-delayed chaotic systems using fractional adaptive sliding mode controller." International Journal of Dynamics and Control, vol. 9, pp. 211-224, 2020. [DOI:10.1007/s40435-020-00628-9]
18. [18] Y. Cao. "Bifurcations in an Internet congestion control system with distributed delay." Applied Mathematics and Computation, vol. 347, pp. 54-63, 2019. [DOI:10.1016/j.amc.2018.10.093]
19. [19] N. Choudhary, J. Sivaramakrishnan and I.N. Kar. "Sliding mode control of uncertain fractional order systems with delay." International Journal of Control, vol. 2, pp. 1-10, 2019.
20. [20] C. Huang and J. Cao. "Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system." Physica A: Statistical Mechanics and its Applications, vol. 473, pp. 262-275, 2017. [DOI:10.1016/j.physa.2017.01.009]
21. [21] P. Muthukumar, P. Balasubramaniam and K. Ratnavelu. "Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem." International Journal of Dynamics and Control, vol. 5, pp. 115-123, 2017. [DOI:10.1007/s40435-015-0169-y]
22. [22] R. Saravanakumar, R. Datta and Y. Cao. "New insights on fuzzy sampled-data stabilization of delayed nonlinear systems." Chaos, Solitons & Fractals, vol. 154, pp. 111654-111659, 2022. [DOI:10.1016/j.chaos.2021.111654]
23. [23] L. Chen, J. Qu, Y. Chai, R. Wu and G. Qi. "Synchronization of a class of fractional-order chaotic neural networks." Entropy, vol. 15, pp. 3265-3276, 2013. [DOI:10.3390/e15083355]
24. [24] Y. Cao. "Bifurcations in an Internet congestion control system with distributed delay." Applied Mathematics and Computation, vol. 347, pp. 54-63, 2019. [DOI:10.1016/j.amc.2018.10.093]
25. [25] H. Tirandaz and A. Hajipour. "Adaptive synchronization and anti-synchronization of TSUCS and Lü unified chaotic systems with unknown parameters." Optik, vol. 130, pp. 543-549, 2017. [DOI:10.1016/j.ijleo.2016.10.093]
26. [26] Z. Rashidnejad, P. Karimaghaee. "Synchronization of a class of uncertain chaotic systems utilizing a new finite-time fractional adaptive sliding mode control." Chaos, Solitons & Fractals: X , vol. 5, pp. 100042-100050, 2020. [DOI:10.1016/j.csfx.2020.100042]
27. [27] S. Kuntanapreeda. "Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach." Nonlinear Dynamics, vol. 84, pp. 2505-2515, 2016. [DOI:10.1007/s11071-016-2661-0]
28. [28] M.P. Aghababa. "Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller." Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp. 2670-2681, 2012. [DOI:10.1016/j.cnsns.2011.10.028]
29. [29] H. Delavari. "A novel fractional adaptive active sliding mode controller for synchronization of non-identical chaotic systems with disturbance and uncertainty." International Journal of Dynamics and Control, vol. 5, pp. 102-114, 2017. [DOI:10.1007/s40435-015-0159-0]
30. [30] M. Tabasi and S. Balochian. "Synchronization of the chaotic fractional-order Genesio-Tesi systems using the adaptive sliding mode fractional-order controller." Journal of Control, Automation and Electrical Systems, vol. 29, pp. 15-21, 2018. [DOI:10.1007/s40313-017-0350-y]
31. [31] M. Krstic, I. Kanellakopoulos and P.V. Kokotovic. "Nonlinear and adaptive control design." Wiley, vol. 5, pp. 54-63, 1995.
32. [32] Y. Li, Y. Chen and I. Podlubny. "Stability of fractional-order nonlinear dynamic sys-tems : Lyapunov direct method and generalized Mittag-Leffler stability." Computers & Mathematics with Applications, vol. 59, pp. 1810-1821, 2010. [DOI:10.1016/j.camwa.2009.08.019]
33. [33] M. Mohadeszadeh and H. Delavari. "Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control." International Journal of Dynamics and Control, vol. 5, pp. 124-134, 2017. [DOI:10.1007/s40435-015-0177-y]
34. [34] M.P. Aghababa. "Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller." Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp. 2670-2681, 2012. [DOI:10.1016/j.cnsns.2011.10.028]
35. [35] N. Nikdel and M.A. Badamchizadeh. "Fractional-order adaptive backstepping control of a class of uncertain systems with external disturbances." International Journal of Control, vol. 92, pp. 1344-1353, 2019. [DOI:10.1080/00207179.2017.1393105]
36. [36] M. K. Shukla and B.B. Sharma. "Backstepping based stabilization and synchronization of a class of fractional order chaotic systems." Chaos, Solitons & Fractals, vol. 102, pp. 274-284, 2017. [DOI:10.1016/j.chaos.2017.05.015]
37. [37] I. Podlubny. "Fractional Differential Equations Academic Press", 1999.
38. [38] H. Liu, Y. Pan, S. Li and Y. Chen. "Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control." International Journal of Machine Learning and Cybernetics, vol. 9, pp. 1219-1232, 2018. [DOI:10.1007/s13042-017-0646-z]
39. [39] W. Qiao, D. Dong-Sheng and Q. Dong-Lian. "Mittag-Leffler synchronization of fractional-order uncertain chaotic systems." Chinese Physics B, vol. 24, pp. 060508-060600, 2018. [DOI:10.1088/1674-1056/24/6/060508]
40. [40] M.P. Aghababa. "A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems." Nonlinear Dynamics, vol. 78, pp. 2129-2140, 2014. [DOI:10.1007/s11071-014-1594-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control (English Edition)

Designed & Developed by : Yektaweb