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Abstract— In this work, the goal is to achieve both
stabilization and synchronization of a general class of
fractional-order chaotic systems. It is assumed that there
are uncertainties and external disturbances in the system,
and it is also supposed that the system parameters are
unknown. Uncertainties and disturbances are undesirable
factors that can disrupt the system response. To this end,
appropriate adaptive laws have been proposed to address
these factors. A systematic step-by-step technique is also
developed for designing a controller based on the
backstepping method. The analysis of the proposed control
structure is carried out according to the fractional
Lyapunov theorem which is a more realistic technique for
the analysis and stability of nonlinear systems. Finally, the
simulation results are presented to confirm and prove the
effectiveness of the proposed method. The results of
implementing our proposed controller for different
fractional-order chaotic systems are compared with some
control approaches in the available papers and it confirms
the superiority of the proposed control in this paper.

Keywords: Adaptive control, backstepping control, chaotic
system, fractional calculus, synchronization.

|.INTRODUCTION

IN recent decades, much attention has been paid to

nonlinear control. Given the chaos in real-world
systems and many useful applications in the fields of
physics and engineering, several methods have been
proposed in the last few years to stabilize and
synchronize chaotic systems such as: fuzzy control [1,2],
observer control [3], sliding mode control [4-6], active

control [7], output feedback control [8,9], impulsive
control [10,11], neural network control [12,13], etc.

Fractional-order chaotic systems have also been
developed. Although fractional calculus is an old
mathematical subject dating back more than 300 years, it
has attracted the attention of many researchers in recent
years. In fact, all physical phenomena in nature exist in
the form of fractional-order and the integer-order
differential equation is just a particular case of fractional-
order differential equation. Today, many fractional-order
differential systems have chaotic behavior. The
advantages of fractional-order models in comparison to
integer-order models are: first, the fractional description
can provide a more explicit and accurate explanation, so
it is closer to reality. Second, memory is included in
fractional-order systems. Third, fractional-order models
can enlarge the key space, and hence are more efficient
in coding because they have more customizable
variables. The various techniques mentioned above have
also been used to stabilize and synchronize fractional-
order chaotic systems [14-19].

In [20], Huang et al. have developed an active control
method for the synchronization and anti-synchronization
of the fractional-order chaotic financial systems. In [21],
a sliding mode control method, which is limited to three-
dimensional system, is presented to synchronize the
fractional-order chaotic system. Muthukumar et al. have
proposed the fuzzy predictive control for synchronizing
two similar systems in the T-S fuzzy model [22]. Chen
et al. have used neural networks to synchronize the
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fractional-order system [23]. Most researches regarding
the stabilization and synchronization of fractional-order
chaotic systems have not taken the uncertainties and
disturbances into account and have also assumed all
system parameters to be known. However, the proposed
method is applicable to both synchronization and
stabilization of chaotic systems with uncertainties,
disturbances, and unknown parameters.

In many real systems, the variability of time, the
uncertainty of dynamics and the presence of noise cause
uncertainties and disturbances in the systems and it is
difficult to determine uncertain bounds and disturbances
in advance. Furthermore, all system parameters may not
be specified. Therefore, adaptive control [24-27], which
is another idea of this article, is suggested to overcome
these problems.

In [28], the problems of synchronization and
stabilization of fractional-order chaotic systems in the
presence of a fractional sliding mode controller have
been investigated by Aghababa. The control signal in
[28] has large fluctuations and this is not practical. In [29]
and [30], chattering occurs in the control signal, which
restricts the operation of the controller. However, another
strength of this paper is that permanent chattering is
removed in the control signal and it is practical.

One of the most popular methods used to stabilize and
synchronize nonlinear systems is the backstepping
method developed by kristic et al [31]. Backstepping
control is a recursive method that combines Lyapunov
function with feedback control design. This method
converts the whole system design problem into several
successive design problems for lower-degree subsystems
and even scalars. Due to the flexibility of subsystems
with lower degree, a One of the most popular methods
used to stabilize and synchronize nonlinear systems is the
backstepping method developed by kristic et al [31].
Backstepping control is a recursive method that
combines Lyapunov function with feedback control
design. This method converts the whole system design
problem into several successive design problems for
lower-degree subsystems and even scalars. Due to the
flexibility of subsystems with lower degree, a
backstepping control has the capability of solving
stabilization, synchronization and robust control
problems under freer constraints than other methods. A
control algorithm is chosen for each step in a way that the
corresponding Lyapunov function expresses the stability
of each system. The extension of Lyapunov's theory to
fractional-order nonlinear systems along with the
development of Mittag-Leffler concept of stability is
proposed by Li et al [32].

Using this stability concept in order to design
controller for fractional-order nonlinear systems is an
interesting topic which is the focus of this paper.
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Although the stability of systems in [29] and [33,34] has
been proven by traditional Lyapunov theorem, it is not
applicable to fractional-order systems. However, in this
analysis, the stability analysis and therefore the design of
the stabilization and synchronization controller are
combined with the direct fractional Lyapunov method
and Mittag-Leffler stability which offer a more realistic
approach to stability evaluation of systems.

The proposed design in [34] is based on an adaptive
active sliding mode controller for the synchronization of
two integer-order and fractional-order chaotic systems
that are limited to synchronizing two-dimensional
systems. In [35], Nikdel et al. have developed an adaptive
backstepping control scheme to stabilize two-
dimensional chaotic systems. However, the control
design presented in this article is applicable to n-
dimensional systems. The proposed method in [36] uses
the backstepping method to synchronize two similar
fractional-order chaotic systems and also considers all
the system parameters as known parameters. However, in
this paper, though, the proposed backstepping control
scheme can be used to synchronize two similar and two
different systems.

Using the combination of fractional Lyapunov stability
and Mittag-Leffler stability for backstepping-based
control of fractional-order chaotic systems has been
understudied. Moreover, most of the proposed controllers
use the traditional Lyapunov stability theory. This fact
has provided the motivation to design controllers for
fractional-order systems using the fractional Lyapunov
stability method. According to the above discussion, in
this paper, an adaptive backstepping control method is
used for each n-dimensional fractional-order system. The
proposed approach addresses both problems of
stabilization and synchronization of fractional-order
chaotic systems. First, the stabilization of fractional-
order chaotic systems with unknown parameters,
uncertainties and disturbances is studied showing that the
states of system tend to zero. Then, utilizing the
suggested controller, the synchronization of fractional-
order chaotic systems is examined. Furthermore,
appropriate adaptive laws have been developed to deal
with unknown parameters. Finally, using fractional
Lyapunov theory, the convergence and stability of the
proposed method are investigated.

The advantages of our proposed method are as follows:

e The proposed method is applicable to a wide
range of chaotic systems.

e chattering phenomenon is entirely eliminated
in the proposed method and it is practically
usable.

e The proposed method is applicable to both
synchronization and stabilization of n-
dimensional fractional-order chaotic systems
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in the presence of uncertainties, disturbances,
and unknown parameters.

e Appropriate adaptive laws are introduced for
dealing  with  unknown  parameters.
Additionally, information about disturbance
bound is not needed in the above method.

e Itcan beused in applications such as complex

networks, secret signaling, multilateral
communications and many other engineering
fields.

This paper is organized as follows. In section 2, some
preliminaries of fractional calculus are briefly reviewed.
Section 3 introduces the stabilization issue of fractional-
order chaotic systems using adaptive backstepping
control. Then, according to Lyapunov theorem, the
stability of the proposed approach is investigated. Section
4 explains the synchronization of fractional-order chaotic
systems via backstepping approach in the presence of
uncertainties, disturbances and unknown parameters. In
section 5, numerical simulations show that the suggested
techniques are effective and applicable. In this section,
three recently published control approaches are also
simulated and their results are compared with this
proposed method to demonstrate the effectiveness of the
proposed controller. The concluding part is in section 6.

I1.PRELIMINARIES OF FRACTIONAL CALCULUS

In this paper, the fractional-order derivative/integral
operation is shown by the operator D/, expressed as

dd
P q>0

D =11 q=0, )
[i@n™  q<0

where a, t are the limits of operation and g € (0,1) is
the fractional-order [37]. There are many definitions of
fractional derivative among which the definitions
presented by Caputo, Riemann-Liouville (RL) and
Grunwald-Letnikov (GL) are well-known definitions of
fractional derivative.

Definition 1. The Riemann-Liouville fractional
integration of order g of a continuous function f(t) is
represented below

q _ 1 ct f(@
tole f(E) = @ Jto toyia dr, (2

where I'(q) is the well-known Gamma function
[16,37].

Definition 2. The g-order Riemann-Liouville
fractional derivative of function f(t) is expressed by

L O an )

to (t-0)a-m+1" "

q _adif@m _
fth f = dtd ~ r(m-q)dtm

wherem —1 < g <m, m € N [16,37].
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Definition 3. The g-order Caputo fractional derivative
of function f(t) is given by

tngf(t) =
1t M _
rm-q) fto (t-7)a-m+1 dr, m-l<gq<m 4)
d™f () _ ’
datm ’ g=m

where m is the smallest integer number, larger than g
[16,37].

Remark 1. In this article, the Caputo’s definition of
fractional derivative is utilized. For simplicity, the
symbol DY represents fractional derivative.

Theorem 1. Suppose that x(t) = 0 is an equilibrium
point of the fractional-order nonlinear system
§D{x(®) = f(t, x(®)). ()
If there exists a Lyapunov function V(t, x(t)) and
class K functions g;, i = 1,2,3 such that
g (lx@®D <V (£, x®) < g (lx@®ID), (6)
DV (t,x(1) < —gs(Ulx@®ID), (7

then (5) will be asymptotically stable [38].

Lemma 1. Let x(t) € R be a real-valued continuous
differentiable function. Then forany u = 2", n € N,

Dlxk(t) < ux* 1(t)D]x(¢), (8)
where g € (0,1) is the fractional-order [39].

Corollary 1. Let x(t) € R be areal-valued continuous
differentiable function. Then for any time t [39]

§Dfx2(t) < x(t)DIx(t) Vq € (0,1). (9)

111.STABILIZATION OF FRACTIONAL-ORDER CHAOTIC
SYSTEMS USING ADAPTIVE BACKSTEPPING CONTROL

A. Problem Formulation

Consider a fractional-order chaotic system expressed
by the following class of uncertain n-dimensional
nonlinear equations

{qui=xi+1, 1<i<n-1

Dix, = f(x,t) + 8TF(x,t) + Af (x,t) + d(x,t) + u(t)
(10)

where g € (0,1), x(t) = [xq, X2, ..., x,]7 € R™ is the
state vector. f(x,t) € R and F(x,t) € R¥® are known
nonlinear functions. & € RP is the uncertain parameter
vector. Af (x,t) € Rand d(x, t) € R indicate uncertainty
and external disturbance, respectively. u(t) € R is the
control input to be designed later.

Assumption 1. The uncertainty and disturbance are
bounded and defined by
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[Af(x, )| <oand |d(x, t)| < 9. (11)

Assumption 2. The constants ¢ and ¥ are unknown
positive.

Definition 4. The purpose of the stabilization problem
is to select an appropriate controller u(t) which
gim [lx(®)]| = 0, i.e. the states of system (10) will tend to

zero [40].

A control algorithm will be developed in the next
section.

B. Controller Design

Here, adaptive backstepping control approach is used
to get stabilization of a fractional-order chaotic system in
(10) with uncertainties, disturbances and unknown
parameters.

In each step of the proposed algorithm, a virtual
controller is developed for each subsystem and moving
to the last equation, the final controller w(t) is optained.
In each step, a suitable Lyapunov function is selected and
a stabilization controller is designed using Theorem 1.
An appropriate adaptive law is also used to estimate the
unknown parameters. The results of this section are
proved by the fractional-order extension of Lyapunov
direct method.

The coordinate transformations are defined below

Z; =X .
(i =x—q_ 25isn. (12)

The result is shown as the following theorem:

Theorem 2. For the fractional-order system (10) with
unknown parameters, if the adaptive backstepping
control is designed as

u(t) = —f(x,t) —8"F(x,t) + D9ay_q — Zp_q —

Ynin — (6 + g)Sgn(Zn)' (13)
and adaptive laws of 8, 6 and 9 as

D96 = z,F(x,t), (14)

DG = |z, (15)

DI = |z,], (16)

then states of system are asymptotic stabilization, i.e.
lim[lx ()l = 0.

Proof. Step 1: Let z; = x; and differentiating two
sides of it, one obtains

D9z, = Dx; = x,. @an

Suppose for the first subsystem, x, is the controller and
a, is the virtual controller. Consider z, as the difference
between the two controllers, i.e. z, = x, —a; = x, =
z, + a,. Now equation (17) is rewritten below
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qul =27 + aq . (18)

The Lyapunov function candidate V; is selected for
subsystem (18) below

v, = ng . (19)
Taking the fractional-order derivative of Lyapunov

function and utilizing the Lemmas 1 and 2, one has

Dqu S Zquzl = Zl(ZZ + 0(1). (20)

In order to fulfill the stability criterion stated in the
previous section, the term «a; is defined below

a1 = —VY121, (21)
which leads to DV, < —y,z% + z,z,.

The term z,z, should be deleted in the above
statement. By choosing a, in (21) and using Theorem 1,
it is guaranteed that z, tends to zero, leading to subsystem
stability (18).

Step 2: for the second subsystem, it yields
DqZZ =X3 _anl' (22)

Let us define z; = x; — a, which gives x; = z; + a,,
where x4 is the controller and a, is the virtual controller.

By the above definition, Equation (22) is written below
Dz, = z3+ a, — Da; . (23)
Consider the candidate of Lyapunov function below
Vo=V +27%. (24)

Tacking fractional-order differentiating V, in (24), it
yields
DV, < DV, + z,D9z, < —y,z2 + 2,2, + 2,(z3 +
a, — Day). (25)
The virtual control signal «, is defined below
ay = =Y.z, —z; + Dia; . (26)

By substituting (26) into (25), we get DIV, <
Y12} — V225 + 2,23

Similarly, in order to ensure the stabilization of
subsystems in this stage, the term z,z; should be
eliminated. Using the same method as above, we can go

to step (n-1). Here the virtual controller «,,_, is selected
as follows

Ap_1 = —Vn-1Zn-1 — Zn—p + D9aty_;. (27)

Finally, in step n the Lyapunov function is chosen
below

v, = n_l+%Zﬁ+§(0—5)2+%(19—19)2+§”5—
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=112

6”2 4

D, < DV,_; + z,D%z, — (6 — 6)D%6 — (9 —
9)DIH — (8 - S)TDqS < V128 —y,z3 .. —
]/n—lz'rzz—l + Zp_12y + 2, (f (X, 8) + 8TF(x’ t) +
Af(x,t) +d(x,t) + u(t) — D%a,_,) — (6 — 6)D96 —

(9 — 9)D%6 — (8 — ) D93, (28)

By substituting the final controller (13) and the
adaptive law (14) into (28), it is clear that

D, < =Y lyiz2 + zy_ 12, + 2, ((8 -

3)TF(x, O +Af(Ct) +d(x,t) — Zpq — VnZn — (6 +
8)sgnz)) = (o = )13 = (9 — 5)D9 — 2,(5 -
T

8) F(x,0) < =X v:z? + |z (IAf (x, O] +

ld(x, ) = (6 +9)lzn| — (0 — 3)DI6 — (9 —
9)DY . (29)

Utilizing Assumptions 1 and 2, and substituting the
adaptive laws (15,16) into (29), one has

qu;’l = - ?=1]/iZi2 + (0 +19)|an - (6 +7§)|an -

(0 = &)lznl — (9 = 9) Iz, . (30)
It yields
DV, < =¥, vz <0, (31)

where y; > 0. So, according to Theorem 1, the
suggested control strategy will guarantee that states of
system (10) tend to zero. Thus, the Theorem 2 is proved.

IV.SYNCRONIZATION OF FRACTIONAL-ORDER CHAOTIC
SYSTEMS USING ADAPTIVE BACKSTEPPING CONTROL

A. Problem Formulation

Consider the fractional-order chaotic system with
uncertain parameters as below

{qui=xi+1. 1<i<n-1
Dix, = f(x,t) + 8TF(x,t) + Af (x,t) + d™(x,t)
(32)

System (32) is a master system, where g € (0,1),
x(t) = [x,(t), x5(E), ..., x,(£)]T € R™ is the state vector
of the first system, f(x,t) € R and F(x,t) € R¥*? are
known nonlinear functions. & € RP is the uncertain
parameter vector. Af(x,t) and d™(x,t) indicate
uncertainty and external disturbance of the first system,
respectively. It can be assumed that Af(x,t) and
d™(x,t) are bounded by some positive constants i.e.
[Af(x,t) | < Ay and |d™(x, t)| < d;.

The slave system with the control signal u(t) € R is
described below
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{qul-=y,-+1, 1<i<n-1
Dy, = g(y,t) + 87G(y,t) + Ag(y,t) + d*(y, t) + u(t) ’
(33)

where y(t) = [y1(t), V2 (t), ., yo(£)]T € R™ is the
state vector, g(y,t) and G(y,t) € RY? are known
nonlinear functions, @ € RP is the uncertain parameter
vector and finally Ag(y,t) and d°(y,t) indicate
uncertainty and external disturbance of the slave system,
respectively. It can be assumed that Ag(y, t) and d*(y, t)
are bounded by some positive constants i.e. |Ag(y, t)| <
A, and |d®(y, t)| < d,.

Assumption 3. With the above discussion, one can
obtain that

1Ag(y,t) = Af (x, )| < 0y . (34)
ld*(y,t) —d™(x, 0)] <9 . (35)

Assumption 4. The constants g, and 9, are unknown
positive.

Definition 5. To achieve the synchronization issue, the
error among master and slave systems is defined as
e;(t) = y;(t) — x;(t),i = 1,2,...,n. So, the aim is to
synchronize system (32) with system (33) via suggested
control strategy, i.e. [16]

limlle(®)ll = lim ly(&) = x(9)ll = 0. (36)

Subtracting (32) from (33), the synchronization error
dynamics will be below

Dq€i=€i+1, 1<i<
{qun =g t)+07G(y, ) + Mgy, t) +d*(y,t) —  (37)
flx,t) —6TF(x,t) — Af(x,t) — d™(x, t) + u(t)

Clearly, the synchronization problem has turned into
the stabilization issue of error system. To develop the
controller, the backstepping method, which is described
in the next section is used.

B. Controller Design

Here, adaptive backstepping control is utilized for
synchronization of two different fractional-order chaotic
systems with uncertainties, disturbances and unknown
parameters. Coordinate transformations are defined as
{21 =€

<i<
Zi=€i—05i—1’2_l_n' (38)

In the subsequent lines, the method of designing the
controller is illustrated by the following theorem.

Theorem 3. By using the controller (39) and the
adaptive laws (39-43) as follow

u) = —g(y,t) —07G(y, t) + f(x,t) + 8TF(x,t) +

ann—l —Zp-1 " VnZn — (61 + él)sgn(zn)t (39)
D989 = z,F(x,t), (40)
D98 = —z,F(x,t), (41)
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Dq61 = |Z1’l|' (42)
DU, = |z, (43)

the synchronization error moves toward zero, i.e. the
slave system trajectories (33) tend to the master system
trajectory (32).

Proof. Step 1: Let z; = e; and its derivative is
Dqu = qul = eZ ) (44)

where e, is the controller, a, is the virtual controller
and z, is the difference between the two controllers, i.e.
ZZ zez_a1=>62=ZZ+a1.

Therefore, equation (44) is rewritten below
Dq21 = ZZ + al . (45)
The Lyapunov function V; can be selected as V; =
1.2
-Zi.
2

Taking the fractional-order derivative of ¥, and
utilizing the Lemmas 1 and 2, it yields
Dqu S Zquzl = Zl(ZZ + 0(1). (46)

The term «a; is selected in a way to meet the stability
criterion,

a = Y121, (47)
which leads to DIV, < —y,z? + z,z,.

Step 2: Similarly, for the second subsystem, it yields
D9z, =e; — Dla, . (48)

Let us define z; = e; — a, which gives e; = z; + a,,
where e; is the controller and «, is the virtual controller.
Now one can get

DqZZ = Z3 + a, — anl . (49)
The Lyapunov function is selected for the second
subsystemas V, = V; + %zzz.
Tacking fractional-order derivative of V,, one has

DqVZ S Dqu + ZquZZ S —}/1212 + lez + 22(23 +
az - anl)' (50)
The virtual control signal a, is defined below
a, = —Yy2, —z; + Da; . (51)
Substituting (51) into (50), we get DIV, < —y,z? —
Y222 + 2,23,
Similarly, in order to ensure the stabilization of
subsystems in this stage, the term z,z; should be
eliminated. Using the same method as above, we can go

to step (n-1). The virtual controller «,_, is selected
below

Apn—1 = —Vn-1Zn-1 — Zn-2 + D9aty_;. (52)
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Step n: The Lyapunov function is defined by

1 1 ~ 1 a
Vo=Vo1+5z3 +5(01 = 6)* +5 0, — 9% +
1 =12 1 ~n2
28 =3l +3lle -2l
D, < DV,_; + z,D%z, — (6, — 6,)D96, — (9, —
8,)D99,—(6 — 8) D18 — (0 — 8) DIB < —y, 27 —
)/ZZZ2 U )/n—lzrzl—l +Zp-1Zy t Zn(g(y: t) +

0"G(y,t) +Ag(y,t) +d°(y,t) — f(x,t) —
8TF(x,t) — Af (x,t) —d™(x,t) + u(t) — D4a,,_;) —

(0—1 - 61)Dq61 - (191 - 91)Dq1§1—(6 - S)TDqS -

(6-9)'D8. (53)
By substituting the final controller (39) and adaptive

laws (40,41) into (53)

DU, < —YMlyiz2 + zy_ 12, + 7, (HTG(y, t) +

Ag(y,t) +d°(y,t) = 8"F(x,t) — Af (x, ) —

d™(x,t) —0TG(y,t) + 8"F(x,t) + Dlay_y — 2,1 —

YnZn — (61 + 1§1)Sgn(zn)) — (0, —6,)D6; — (191 -

191)Dq1§1+zn(6 - S)TF(x, t) — z, (0 - @)TG(y, t).

(54)

Itis clear

= DU, < =YL viz! + 1zl (189 (. 6) — AF (x, )] +

|42, 8) = d™(x, 1) = (61 + B 2| = (07 —

6,)D16, — (9, — 9,)D9, . (55)
Utilizing Assumptions 3 and 4, and by substituting the

adaptive laws (42,43) into (55)

D, < =Y vzt + (o + 9|z, | — (51 + 1§1)|Zn| -

(o1 — 6)|zn| — (191 - 191)|Zn| =< _Z?=1Yizi2 <0, (56)
where y; = 0. Then, using the Lyapunov stability

Theorem 1, it can be concluded that the synchronization

error moves toward zero and the synchronization is
realized. Thus, the Theorem 3 is proved.

V.NUMERICAL EXAMPLE

Here, three examples are represented to investigate the
usefulness of the developed method. Numerical
simulations have been implemented with MATLAB
software.

A. Examplel

In this example, the suggested controller (13) and the
adaptive laws (14-16) are used to stabilize the uncertain
fractional-order Genesio-Tesi system. The fractional-
order Genesio-Tesi system with unknown parameters is
given by the following equation
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qul = Xy
quz = X3 . (57)
qu3 = —61)61 - 62){2 - 63x3 + 64)6%

Fig. 1 shows the chaotic motion of the fractional-order
Genesio-Tesi system (57) for 6, = 6, §, = 2.92, 65 =
1.2 and &, = 1. Initial conditions of the system (57) are
chosen as x;(0) = —0.1 x,(0) = 0.5 and x3(0) = 0.2.
The fractional-order g is also selected to 0.94.

Fig. 1. The chaotic trajectory of the fractional-order Genesio-
Tesi system (57).

The design parameters are selectedasy; =4 ,y, =3
, Y1 = 2.5 and the order of derivative is g = 0.94. The
uncertainties and external disturbances are selected
below

qul = Xy
quZ = X3 . (58)
qu3 = _61x1 - 62X2 - 63x3 + 64_x12

The control strategy in Theorem 2 is utilized to
stabilize the system (57) with unknown parameters,
uncertainties and disturbances.

Figs. 2-4 illustrate the state trajectories of the system
(57), the time evolutions of the update vector parameter
& and the time history of the control input (13),
respectively. As it can be seen, the state trajectories of the
system (57) tend to zero and the control signal is
practical. This means that the proposed backstepping
controller can be used to stabilize fractional-order
Genesio-Tesi  system. Also, the system unknown
parameters are fully estimated and converge to a constant
value.

To compare the performance of our proposed method,
the fractional-order sliding mode control strategy
presented in [28] has been simulated to stabilize
fractional-order Genesio-Tesi system. Fig. 5 shows the
time response of the control signal via the proposed

fractional-order sliding mode control method in [28]. As
it is obvious, the control signal has permanent chattering,
which limits the practical performance of the proposed
controller in [28]. These results confirm the superiority
of the proposed adaptive backstepping method to
stabilize the fractional-order Genesio-Tesi system.

0.5

-0.5

X4 Xy, Xy

A5

-2.5

. . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Fig. 2. State trajectories of the fractional-order Genesio—Tesi
system controlled with (13).
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Fig. 3. Time response of the adaptive vector parameter 8.

20

| -

control input
o

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)
Fig. 4. Time history of the control input (13) applied to the
fractional-order Genesio—Tesi system.
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control input

. . \ \ . . \ . .
0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Fig. 5. The time response of the applied control input via the
method in Ref. [28].

B. Example 2

In this example, the suggested adaptive backstepping
controller (39) is utilized to synchronize two different
uncertain fractional-order Duffing—Holmes system and
fractional-order Gyros system. The fractional-order
Duffing—Holmes system with unknown parameter is
given by the following equation,

master system:

Dix; =x
{ 1 2 , ' (59)
Dix, = x; —8;x, —x;{ + 0.3cos t

where §;= 0.25. Fig. 6 shows the chaotic behavior of
the fractional-order Duffing—Holmes system (59) for g =
098 and the initial condition [x;(0),x,(0)]" =
[0.3,—0.2]".

1

0.5

-0.5

Fig. 6. The chaotic trajectory of the fractional-order Duffing—
Holmes system (59).

The fractional-order Gyros system is given below,

78

slave system:

Dy, =y,

Dy, = —100% —siny; — 6,y; — (60)
8,y3 + (1 + 35sinwt) siny; + u(t)

where 6, = 0.5, 8, =0.05 and w = 1.8. Chaotic

attractor of this system is revealed in Fig. 7 for ¢ = 0.98
and the initial condition [y, (0), y,(0)]" = [-0.1,0.2]".

Y3
o

Fig. 7. The chaotic trajectory of the fractional-order Gyros
system (59).

The design parameters are selected asy; = 2 ,y, =2
and the order of derivative is ¢ = 0.98. Furthermore, the
uncertainties and external disturbances are selected
below

Af (x,t) = 0.1sin (x;)cos (x;), d™(t) = 0.1 cos(3t).
(61)

Ag(y,t) = 0.4sin (y;)sin (y,), d(t) = 0.2 cos(t).(62)

Therefore, the control algorithm in Theorem 3 is used
to synchronize system (57) and system (59). Figs. 8-10
demonstrate the trajectory of master and slave systems,
synchronization error and the time evolutions of the
update vector parameters & and 8, when the controller
(39) is utilized. The time history of the control input (39)
is shown in Fig. 11. It is clear that the proposed controller
has been able to synchronize both master and slave
systems even in the presence of uncertainties and
disturbances. Also unknown parameters of the system
converge to constant value. To compare the results, the
fractional-order sliding mode control presented in [29] is
simulated for the two systems (59) and (60).The control
signal in [29] is shown in Fig. 12. Clearly, the control
signal in [29] has fluctuations. These results confirm the
superiority of our proposed adaptive backstepping
method in synchronizing two systems (59) and (60).
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Fig. 8. State trajectories of the fractional-order Duffing—

Holmes and fractional-order Gyros systems.
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Fig. 9. Synchronization errors of the fractional-order Duffing—

Holmes and fractional-order Gyros systems.
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Fig. 10. Time response of the adaptive vector parameters &
and 8.
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Fig. 11. Time history of the control input (39).
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Fig. 12. The time response of the applied control input via the
method in Ref. [29].

C. Example 3

In this example, the synchronization of two similar
indeterminate fractional-order Genesio-Tesi systems is
examined. The master system is considered as in (57).
The slave system can be given below


http://dx.doi.org/10.52547/jocee.1.1.71
http://jocee.kntu.ac.ir/article-1-24-en.html

[ Downloaded from jocee.kntu.ac.ir on 2025-10-20 ]

[ DOI: 10.52547/jocee.1.1.71 ]

Z. Rashidnejad et al.: Design of adaptive backstepping control for stabilization and synchronization of a class of uncertain fractional-order chaotic

systems with uncertainties and disturbances.

Dy, =y,
Dy, = y; , (63)
Dly; = =01y — 6,y, — 03y3 + 943’12

where 6, = 6,60, = 2.92,6; = 1.2 and 6, = 1. Initial
conditions of the system (63) are chosen as y,(0) =
—0.3 y,(0) = 0.1 and y5(0) = 1.8. The fractional-order
q is also selected to 0.94.

Figs. 13-15 reveal the trajectories of the master and
slave systems, the synchronization error and the estimate
of the master and slave system parameters in the presence
of suggested controller (39). It is obvious that the
synchronization errors quickly reach zero and
accordingly it can be said that both master and slave
systems are synchronized. Fig. 16 shows the time
response of control input (39). Fig. 17 shows the control
input presented in [30]. It is clear that the control input in
[30] has large fluctuations while the proposed control
signal in our paper lacks chattering and is practical.

1

XY

08 . L . I . L . I .
0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

XY,

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

80

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Fig. 13. State trajectories of two fractional-order Genesio—Tesi
systems.
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Fig. 14. Synchronization errors of two fractional-order
Genesio—Tesi systems.
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Fig. 15. Time response of the adaptive vector parameter 8.
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Fig. 16. Time history of the control input (39).
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Fig. 17. The time response of the applied control input via the

method in Ref. [30].

VI1.CONCLUSION

In this work, a fractional controller utilizing adaptive
backstepping technique is suggested. This controller can
be used for a general class of systems. At the first,
assuming the presence of uncertainties and disturbances,
the stabilization of fractional-order chaotic system with
unknown parameters is investigated. Following the
discussion, the synchronization of two different
fractional-order chaotic systems with uncertain
parameters is studied. The detailed analysis is pursuant to
fractional Lyapunov theorem and adaptive laws to certify
the stability of the controlled systems. It is needed to
mention that the suggested method is simple and
practical. Three examples are presented to examine the
effectiveness of suggested approach and provide a deeper
view of the proposed controller applications. The results
of our suggested technique are compared with the results
of some available papers. The simulation results show

81

better performance of the proposed controller in this
paper.
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